On Some Examples of Williamson Matrices





Hadamard matrix, Williamson matrix


This article deals with some special cases of Williamson Hadamard matrices, which are generated by block symmetric circulant matrices. In these cases, the patterns of the obtained examples have been analyzed for insight into the nature of the Williamson matrices.


Download data is not yet available.


C. Bright, I. Kotsireas and V. Ganesh, A SAT + CAS method for enumerating Williamson matrices of even order, in: Proceedings of the AAAI Conference on Artificial Intelligence 32 (2018), 6573 – 6580, DOI: 10.1609/aaai.v32i1.12203.

C. Bright, I. Kotsireas and V. Ganesh, Applying computer algebra systems with SAT solvers to the Williamson conjecture, Journal of Symbolic Computation 100 (2020), 187 – 209, DOI: 10.1016/j.jsc.2019.07.024.

R. Craigen, G. Faucher, R. Low and T. Wares, Circulant partial Hadamard matrices, Linear Algebra and its Applications 439 (2013), 3307 – 3317, DOI: 10.1016/j.laa.2013.09.004.

D.Ž. Ðokovic, Williamson matrices of order 4n for n = 33,35,39, Discrete Mathematics 115(1-3) (1993), 267 – 271, DOI: DOI: 10.1016/0012-365X(93)90495-F.

J.S. Hadamard, Resolution d’une question relative aux determinants, Bulletin des Sciences Mathematiques 17(1893), 240 – 246.

W.H. Holzmann, H. Kharaghani and B. Tayfeh-Rezaie, Williamson matrices up to order 59, Designs, Codes and Cryptography 46 (2008), 343 – 352, DOI: 10.1007/s10623-007-9163-5.

K.J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, Princeton, (2007), https://www.jstor.org/stable/j.ctt7t6pw.

W. Lang and E. Schneider, Turyn type Williamson matrices up to order 99, Designs, Codes and Cryptography 62 (2012), 79 – 84, DOI: 10.1007/s10623-011-9492-2.

P.K. Manjhi, Some results on the parameters of the general difference sets correspond to circulant partial Hadamard matrices, Research in Mathematics 9 (2022), Article number 2152961, DOI: 10.1080/27684830.2022.2152961.

P.K. Manjhi and A. Kumar, On the construction of Hadamard matrices, International Journal of Pure and Applied Mathematics 120 (2018), 51 – 58.

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics 12(1-4) (1933), 311 – 320, DOI: 10.1002/sapm1933121311.

J. Seberry and M. Yamada, Hadamard Matrices: Constructions using Number Theory and Algebra, 1st edition, John Wiley and Sons, (2020), DOI: 10.1002/9781119520252.

A. Sergeeva and A. Vostrikova, Calculating symmetrical Hadamard matrices of Balonin-Seberry construction for coding and masking, Procedia Computer Science 176 (2020), 1722 – 1728, DOI: 10.1016/j.procs.2020.09.197.

M.K. Singh and P.K. Manjhi, Construction of Hadamard matrices from certain Frobenius groups, Global Journal of Computer Science and Technology 11 (2011), 45 – 50, https://computerresearch.org/index.php/computer/article/view/753.

J. Sylvester, LX. Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34(232) (1867), 461 – 475, DOI: 10.1080/14786446708639914.

J. Williamson, Hadamard’s determinant theorem and the sum of four squares, Duke Mathematical Journal 11 (1944), 65 – 81, DOI: 10.1215/S0012-7094-44-01108-7.




How to Cite

Manjhi, P. K., & Kujur, N. N. (2023). On Some Examples of Williamson Matrices. Communications in Mathematics and Applications, 14(1), 81–88. https://doi.org/10.26713/cma.v14i1.2225



Research Article