Incident Vertex \(\pi\)-Coloring of Graphs




π coloring of graphs, Incident vertex π coloring, Fan graphs, Friendship graphs, Wheel graphs, Diamond graphs, Star and Double Star graphs


We defined the concept of \(\pi\)-coloring of graphs and incident vertex \(\pi\) coloring of graphs. The incident vertex \(\pi\) coloring number \((IV \pi CN)\) of graphs is different from all existing coloring techniques. The \(IV \pi CN\) of complete graph \((K_n)\) is \(n\). \(IV \pi CN\) of wheel, star, double star graph are \((n+1)\). Also, \(IV \pi CN\) of friendship, diamond and fan graphs are \(\Delta+1\). The \(IV \pi CN\) of double fan graph is \(\Delta+2\). The \(IV \pi CN\) of complete bipartite graphs \(K_{m,n}\) is \((m+n)\). The \(IV \pi CN\) of bipartite graph is bounded. Moreover, some results associated to enumeration of the number of graphs having equal incident vertex \(\pi\) chromatic number of few families are proved.


Download data is not yet available.


K. Appel and W. Haken, Every planar map is four colorable – Part I: Discharging, Illinois Journal of Mathematics 21(3) (1977), 429 – 490, DOI: 10.1215/ijm/1256049011.

K. Appel and W. Haken, The solution of the four-color-map problem, Scientific American 237(4) (1977), 108 – 121, URL:

K. Appel, W. Haken and J. Koch, Every planar map is four colorable – Part II: Reducibility, Illinois Journal of Mathematics 21(3) (1977), 491 – 567, DOI: 10.1215/ijm/1256049012.

M. Behzad, Graphs and Their Chromatic Numbers, Doctoral Thesis, Michigan State University, East Lansing, MI, USA, iv + 62 pages (1965), DOI: 10.25335/M5H41K22C.

S. Benzer, Fine structure of a genetic region in bacteriophage, Proceedings of the National Academy of Sciences (PNAS) 41(6) (1955), 344 – 354, DOI: 10.1073/pnas.41.6.344.

A. A. Bhange and H. R. Bhapkar, Perfect colouring of the graph with its kinds, Journal of Physics:Conference Series 1663 (2020), 012024, DOI: 10.1088/1742-6596/1663/1/012024.

H. R. Bhapkar and J. N. Salunke, Proof of four color map theorem by using PRN of graph, The Bulletin of Society for Mathematical Services and Standards 11 (2014), 26 – 30, DOI: 10.18052/

G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, Annals of Mathematics 14(1/4) (1912-1913), 42 – 46, DOI: 10.2307/1967597.

J. A. Bondy and U. S. R. Murthy, Graph Theory with Applications, North-Holland, 264 pages (1976).

N. Deo, Graph Theory with Applications to Engineering & Computer Science, Dover Publications, Inc., Mineola, New York (1974).

I. G. Dmitriev, Characterization of a class of k-trees, American Mathematical Society Translations: Series 2 132 (1986), 1 – 8, DOI: 10.1090/trans2/132.

L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum Petropolitanae 8 (1741), 128 – 140, URL:, (English translation: L. Euler, Leonhard Euler and the Koenigsberg bridges, Scientific American 189 (1953), 66 – 70, DOI: 10.1038/scientificamerican0753-66).

C. F. Gauss, Demonstratio nova altera theorematis omnem functionem algebraicam rationalem integram unius veriabilis in factores reales primi vel secundi gradus resolvi posse, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. Comm. Class. Math. 3 (1816), 107 – 142, URL: 3A%5B268%2C269%5D%2C%22view%22%3A%22info%22%7D.

A. Hajnal and J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen, Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica 1 (1958), 113 – 121, URL:

F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Massachusetts (1969).

P. J. Heawood, Map-colour theorems, The Quarterly Journal of Pure and Applied Mathematics 24 (1890), 332 – 338, URL:

S. Hong, J. H. Kwah, K. H. Kim and F. W. Roush (editors), Combinatorial and Computational Mathematics, World Scientific Publications Company, Singapore, 288 pages (2001), DOI: 10.1142/4749.

A. B. Kempe, On the geographical problem of the four colours, American Journal of Mathematics 2(3) (1879), 193 – 200, DOI: 10.2307/2369235.

M. Kubale (editor), Graph Colorings, Contemporary Mathematics, Vol. 352, American Mathematical Society, (2004), DOI: 10.1090/conm/352.

O. Ore and J. Stemple, Numerical calculations on the four-color problem, Journal of Combinatorial Theory 8(1) (1970), 65 – 78, DOI: 10.1016/S0021-9800(70)80009-6.

D. S. Riheson, Euler’s Gem: The Polyhedron Formula and the Birth of Topology, Princeton University Press, 336 pages (2008), URL:

N. Robertson, D. Sanders, P. Seymour and R. Thomas, The four-colour theorem, Journal of Combinatorial Theory, Series B 70(1) (1997), 2 – 44, DOI: 10.1006/jctb.1997.1750.

G.-C. Rota, On the foundations of combinatorial theory I – theory of Möbius functions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2 (1964), 340 – 368, DOI: 10.1007/BF00531932.

J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, 1st edition, McGraw Hill Education, 622 pages (2017).

D. B. West, Introduction to Graph Theory, 2nd edition, Pearson Education, Inc., 470 pages (2000).

H. Whitney, The coloring of graphs, Annals of Mathematics (Second Series) 33(4) (1932), 688 – 718, DOI: 10.2307/1968214.

R. J. Wilson, Introduction to Graph Theory, 5th edition, Pearson Education Limited, 192 pages (2010).




How to Cite

Thakare, S., & Bhapkar, H. R. (2023). Incident Vertex \(\pi\)-Coloring of Graphs. Communications in Mathematics and Applications, 14(2), 591–604.



Research Article