Classical Solution for the Boltzmann Equation with Absorption Term in Yang-Mills Field

David Dongo, Norbert Noutchegueme, Abel Kenfack Nguelemo

Abstract


We consider in this work the Boltzmann equation with absorption term in the presence of an external field which is of Yang-Mills type, on a Bianchi type 1 space-time. Such an equation governs the evolution with collisions of plasmas, for instance of quarks and gluons (quagma), where non-Abelian Yang-Mills field replaces the usual electromagnetic field. A local in time existence and uniqueness result for the classical solution is established, using a suitable combination of Faedo Galerkin method and the standard iteration method. We also prove the well-posedness of the solution.


Keywords


Boltzmann equation; Absorption term; Yang-Mills field; Classical solution; Bianchi type 1

Full Text:

PDF

References


L. Arlotti, N. Bellomo and E. De Angelis, Generalized kinetic (Boltzmann) models: mathematical structures and applications, Mathematical Models and Methods in Applied Sciences 12(4) (2002), 567 – 591, DOI: 10.1142/s0218202502001799.

R. D. Ayissi, N. Noutchegueme, R. M. Etoua and H. P. M. Tchagna, Viscosity solutions for the one-body Liouville equation in Yang-Mills charged Bianchi models with non-zero mass, Letters in Mathematical Physics 105(9) (2015), 1289 – 1299, DOI: 10.1007/s11005-015-0777-7.

R. D. Ayissi and N. Noutchegueme, The Faedo-Galerkin method for the relativistic Boltzmann equation in Bianchi type 1 space-time, Communication in Mathematics and Applications 4(2) (2013), 93 – 118, DOI: 10.26713/cma.v4i2.166.

R. D. Ayissi and N. Noutchegueme, Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant, Journal of Mathematical Physics 56(1) (2015), 012501, DOI: 10.1063/1.4905648.

D. Bancel and Y. Choquet-Bruhat, Existence, uniqueness and local stability for the Einstein-Maxwell-Boltzmann system, Communication in Mathematical Physics 33(2) (1973), 83 – 96, DOI: 10.1007/BF01645621.

D. Bancel, Problème de Cauchy de l’équation de Boltzmann en relativité générale, Annales de l’Institut Henri Poincaré 18(3) (1973), 263 – 284.

D. Bazow, G. S. Denicol, U. Heinz, M. Martinez and J. Noronha, Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lemaître-Robertson-Walker space-time, Physical Review D 94(12) (2016), 125006, DOI: 10.1103/PhysRevD.94.125006.

Y. Choquet-Bruhat and N. Noutchegueme, Système de Yang-Mills-Vlasov en jauge temporelle, Annales de l’IHP Physique théorique 55 (1991), 759 – 787.

Y. Choquet-Bruhat and N. Noutchegueme, Solution globale des équations de Yang-Mills-Vlasov (masse nulle), Comptes Rendus de l’Académie des Sciences. Série 1, Mathématique 311(12) (1990), 785 – 789.

Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in Hs,± spaces on manifolds which are euclidean at infinity, Acta Mathematica 146(1) (1981), 129 – 150, DOI: 10.1007/bf02392460.

D. Dongo, N. Noutchegueme and A. K. Nguelemo, Regular solution for the generalized relativistic Boltzmann equation in Yang-Mills field, General Letters in Mathematics 6(2) (2019), 61 – 83, DOI: 10.31559/glm2019.6.2.2.

H. Lee, Asymptotic behaviour of the relativistic Boltzmann equation in the Robertson-Walker spacetime, Journal of Differential Equations 255(11) (2013), 4267 – 4288, DOI: 10.1016/j.jde.2013.08.006.

A. Lichnerowicz, Theorie relativiste de la Gravitation et de l’Électromagnétisme, Masson et cie, Paris (1955).

J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris (1968).

N. Noutchegueme, D. Dongo and F. E. Djiofack, Global regular solution for the Einstein-Maxwell-Boltzmann-Scalar field system in Bianchi type I space-time, Journal of Advances in Mathematics 13(1) (2017), 7087 – 7118, DOI: 10.24297/jam.v13i1.5982.

N. Noutchegueme and M. Kenmogne, Regular solutions to the Boltzmann equation on a Robertson-Walker space-time, International Journal of Physics and Mathematical Sciences 5(4) (2015), 66 – 104.

N. Noutchegueme and D. Dongo, Global existence of solutions for the Einstein-Boltzmann system in Bianchi type I space-time, Classical and Quantum Gravity 23(9) (2006), 2979, DOI: 10.1088/0264-9381/23/9/013.

N. Noutchegueme, D. Dongo and E. Takou, Global existence of solutions for the relativistic Boltzmann equation with arbitrarily large initial data on a Bianchi type I space-time, General Relativity and Gravitation 37(12) (2005), 2047 – 2062, DOI: 10.1007/s10714-005-0179-8.

N. Noutchegueme and P. Noundjeu, Système de Yang-Mills-Vlasov pour des particules avec densité de charge de Jauge non-Abélienne sur un espace-temps courbe, Annales Henri Poincaré 1 (2000), 385 – 404, Springer, DOI: 10.1007/s000230050008.

E. Takou and F. L. Ciake Ciake, Asymptotic-stability of the inhomogeneous Boltzmann equation in the Robertson-Walker space-time with Israel particles, Applicable Analysis (2018), 1 – 14, DOI: 10.1080/00036811.2018.1522628.

E. Takou and F. L. Ciake Ciake, Global existence of the solutions for the inhomogeneous relativistic Boltzmann equation near vacuum in the Robertson-Walker space-time, General Relativity and Gravitation 50(10) (2018), 122.

E. Takou and F. L. Ciake Ciake, The relativistic Boltzmann equation on a spherically symmetric gravitational field, Classical and Quantum Gravity 34(19) (2017), 195006, DOI: 10.1088/1361-6382/aa85d1.




DOI: http://dx.doi.org/10.26713%2Fcma.v11i1.1338

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905