### Relation-Theoretic Common Fixed Point Theorems for a Pair of Implicit Contractive Maps in Metric Spaces

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

M. Ahmadullah, J. Ali and M. Imdad, Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application, Fixed Point Theory and Applications 2016 (2016), 42, DOI: 10.1186/s13663-016-0531-6.

A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17(4) (2015), 693 – 702, DOI: 10.1007/s11784-015-0247-y.

A. Alam and M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat 31(14) (2017), 4421 – 4439, DOI: 10.2298/FIL1714421A.

A. Alam, A.R. Khan and M. Imdad, Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications, Fixed Point Theory Appl. 2014 (2014), 216, 30 pages, DOI: 10.1186/1687-1812-2014-216.

J. Ali and M. Imdad, An implicitfunction implies several contraction conditions, Sarajevo J. Math. 4(17) (2008), 269 – 285, http://www.anubih.ba/Journals/vol.4,no-2,y08/14revm.imdad2.pdf.

J. Ali and M. Imdad, Unifying a multitude of common fixed point theorems employing an implicitrelation, Commun. Korean Math. Soc. 24(1) (2009), 41 – 55, http://mathnet.or.kr/mathnet/thesis_file/05_C07-102.pdf

V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Poiint Theory Appl. 2012 (2012), 105, https://doi.org/10.1186/1687-1812-2012-105.

K.S. Eke, B. Davvaz and J.G. Oghonyon, Common fixed point theorems for non-self mappings of nonlinear contractive maps in convex metric spaces, J. Math. Computer Sci. 18 (2018), 184 – 191, DOI: 10.22436/jmcs.018.02.06.

K.S. Eke and H. Akewe, Fixed point results for two pairs of non self hybrid mappings in metric spaces of hyperbolic type, Journal of Advanced and Applied Sciences 5(9) (2018), 1 – 5, DOI: 10.21833/ijaas.2018.09.001.

K.S. Eke, Common fixed point theorems for generalized contraction mappings on uniform spaces, Far East Journal of Mathematical Sciences 99(11) (2016), 1753 – 1760, http://eprints.covenantuniversity.edu.ng/id/eprint/7740.

S. Ghods, M.E. Gordji, M. Ghods and M. Hadian, Comment on “coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces” (Lakshmikantham and Ciric, Nonlinear Anal. TMA 70 (2009), 4341-4349), J. Comput. Anal. 14(5) (2012), 958 – 966, https: //web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=15211398&AN=71039551&h=qRhMK4s08d7tZIxCMC1T0f8wCc0L9coNjUBo%2b%2bmEVbYcturU0ZjZ5UmK97ZCEktE5DFFT4thY7EziFzvwfp%2bkQ%3d%3d&crl=f&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d15211398%26AN%3d71039551

G. Jungck, Commuting maps and fixed points, Amer. Math. Monthly 83(4) (1976), 261 – 263, DOI: 10.2307/2318216.

G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4 (1996), 199 – 215, https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=314797.

B. Kolman, R.C. Busby and S. Ross, Discrete Mathematical Structure, 3rd editon, PHI Pvt. Ltd., New Delhi (2000), DOI: 10.5555/861406.

S. Lipschutz, Schaum’s outlines of theory and problems of set theory and related topics, Schaum Pub., New York (1964), DOI: https://catalog.hathitrust.org/Record/000465234.

R.D. Maddux, Relation algebras. Studies in Logic and the Foundations of Mathematics, 150, Elsevier, Amsterdam, (2006), https://www.elsevier.com/books/relation-algebras/maddux/978-0-444-52013-5.

V. Popa, Some fixed point theorems for weakly compatible mappings, Rad. Mat. 10 (2001), 245 – 252.

A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc. 132(5) (2004), 1435 – 1443, DOI: 10.1090/S0002-9939-03-07220-4.

M. Turinici, Fixed points for monotone iteratively local contraction, Demonstr. Math. 19(1) (1986), 171 – 180, https://hal.archives-ouvertes.fr/hal-01188275/.

M. Turinici and R. Reurings, Fixed point results in ordered metric spaces, Libetas r Math. 31 (2011), 49 – 55, https://pdfs.semanticscholar.org/2da2/e6b09dd8513f94a8055619e8840b7e828a7d.pdf

DOI: http://dx.doi.org/10.26713%2Fcma.v10i1.873

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905