On Asymptotically \(f\)-statistical Equivalent Set Sequences in the Sense of Wijsman

Şükran Konca, Mehmet Küçükaslan

Abstract


The aim of this paper is to introduce a generalization of statistical convergence of asymptotically equivalent set sequences and examine some inclusion relations related to a new concept of Wijsman asymptotically equivalent statistical convergence of sequences of sets with respect to a modulus function \(f\).


Keywords


Statistical convergence; Sequence space; Modulus function; Asymptotically equivalent set sequences; Wijsman convergence

Full Text:

PDF

References


A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaestiones Mathematicae 37(4) (2014), 525 – 530, DOI: 10.2989/16073606.2014.981683.

M. Baronti and P. L. Papini, Convergence of sequences of sets, Methods of Functional Analysis in Approximation Theory 76 (1986), 135 – 155.

V. K. Bhardwaj and S. Dhawan, (f)-statistical convergence of order /alpha and strong Cesaro summability of order with respect to a modulus, J. Ineq. Appl. 2015 (332) (2015), 14 pages, DOI: 10.1186/s13660-015-0850-x.

V. K. Bhardwaj, S. Dhawan and S. Gupta, Density by moduli and statistical boundedness, Abst. Appl. Analysis 2016 (2016), Article ID 2143018, 6 pages, DOI: 10.1155/2016/2143018.

V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence, Abst. Appl. Analysis 2016 (2016), Article ID 9365037, 11 pages, DOI: 10.1155/2016/9365037.

V. K. Bhardwaj and S. Dhawan, Density by moduli and Wijsman lacunary statistical convergence of sequences of sets, J. Ineq. Appl. 2017(25) (2017), DOI: 10.1186/s13660-017-1294-2.

V. K. Bhardwaj, S. Dhawan and O. A. Dovgoshey, Density by moduli and Wijsman statistical convergence, Bull. Belg. Math. Soc. 24 (2017), 393 – 415, DOI: 10.36045/bbms/1506477689.

T. Bilgin, ((sigma,f))-Asymptotically lacunary equivalent sequences, International J. Analysis 2014 (2014), Article ID 945902, 8 pages, DOI: 10.1155/2014/945902.

H. Fast, Sur la convergence statistique, Colloq. Math. 2(3-4) (1951), 241 – 244, http://eudml.org/doc/209960.

B. Inan and M. Küçükaslan, Ideal convergence of sequence of sets, Contem. Anal. Appl. Math. 3(2) (2015), 184 – 212, DOI: 10.18532/caam.96325.

I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100(1) (1986), 161 – 166, DOI: 10.1017/S0305004100065968.

M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci. 16(4) (1993), 755 – 762, DOI: 10.1155/S0161171293000948.

H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953), 29 – 49, https://projecteuclid.org/download/pdf_1/euclid.jmsj/1261415624.

I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Fifth Ed., John Wiley and Sons, New York (1991), DOI: 10.2307/3618659.

F. Nuray, U. Ulusu and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Comput. 20(7) (2016), 2883 – 2888, DOI: 10.1007/s00500-015-1691-8.

F. Nuray and B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87 – 99, http://www.math.put.poznan.pl/artykuly/FM49(2012)-NurayF-RhoadesBE.pdf.

N. Pancaroglu and F. Nuray, Invariant statistical convergence of sequences of sets with respect to a modulus function, Abstr. Appl. Anal. 2014 (2014), 818020, DOI: 10.1155/2014/818020.

R. F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math. 36(1) (2003), 149 – 153, https://www.degruyter.com/downloadpdf/j/dema.2003.36.issue-1/dema-2003-0116/dema-2003-0116.pdf.

R. F. Patterson and E. Sava¸s, On asymptotically lacunary statistically equivalent sequences, Thai J. Math. 4 (2006), 267 – 272, http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/90/88.

W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math. 25 (1973), 973 – 978, DOI: 10.4153/CJM-1973-102-9.

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(5) (1959), 361 – 375, DOI: 10.2307/2308747.

E. Seneta, Regularly varying functions, Lecture Notes in Mathematics 508, Springer-Verlag, Berlin — Heidelberg — New York (1976), https://www.springer.com/gp/book/9783540076186.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2(1) (1951), 73 – 74.

O. Talo, Y. Sever and F. Basar, On statistically convergent sequences of closed sets, Filomat 30(6) (2016), 1497 – 1509, DOI: 10.2298/FIL1606497T.

U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Prog. Appl. Math. 4(2) (2012), 99 – 109.

U. Ulusu and F. Nuray, Lacunary statistical summability of sequences of sets, Konuralp J. Math. 3(2) (2015), 176 – 184, https://dergipark.org.tr/download/article-file/507495.

U. Ulusu and F. Nuray, On asymptotically lacunary statistical equivalent set sequences, J. Math. 2013 (2013), Article ID 310438, 5 pages, DOI: 10.1155/2013/310438.

R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Am. Math. Soc. 70 (1964), 186 – 188, https://www.ams.org/journals/bull/1964-70-01/S0002-9904-1964-11072-7/S0002-9904-1964-11072-7.pdf.

R. A. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Am. Math. Soc. 123(1) (1966), 32 – 45, DOI: 10.2307/1994611.




DOI: http://dx.doi.org/10.26713%2Fcma.v10i3.650

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905