Optimal Approximate Solution for Generalized Contraction Mappings

Somayya Komal, Nazra Sultana, Azhar Hussain, Poom Kumam


In this paper, we obtain the best proximity point theorems for \(\alpha\)-Geraghty contractions in the setting of complete metric spaces. We present some examples to prove the validity of our results. Our results extend and unify many existing results in the literature.


Best proximity point, $P$-property, triangular $\alpha$-admissible.

Full Text:



M. Abbas, A. Hussain and P. Kumam, A coincidence best proximity point problem in G-metric spaces, Abst. and Appl. Anal. 2015, Article ID 243753, 12 pages (2015).

R.P. Agarwal and M.A. El-Gebeily and D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), 1–8.

A. Akbar and M. Gabeleh, Generalized cyclic contractions in partially ordered metric spaces, Optim. Lett. 153 (2012), 298–305.

A. Akbar and M. Gabeleh, Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl. 153 (2012), 298–305.

A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010), 2238–2242.

S.S. Basha, Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim. 31 (2010), 569–576.

S.S. Basha, Best proximity points: global optimal approximate solution, J. Glob. Optim. 49 (2011), 15–21.

S.S. Basha, Best proximity point theorems generalizing the contraction principle, Nonlinear Anal. 74 (2011), 5844–5850.

S.S. Basha, N. Shahzad and R. Jeyaraj, Best proximity points: approximation and optimization, Optim. Lett. 7 (2013), 145.

S.S. Basha, Common best proximity points: global minimization of multi-objective functions, J. Glob. Optim. 54 (2012), 367–373.

S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fundam. Math. 3 (1922), 133–181.

J. Caballero, J. Harjani and K. Sadarangani, A best proximity point theorem for Geraghtycontractions, Fixed Point Theory Appl. 2012, Article ID 231 (2012).

S.H. Cho, J.-S. Bae and E. Karapinar, Fixed point theorems for (alpha)-Geraghty contraction type maps in metric spaces, Fixed Point Theory & Appl. 2013, 329 (2013).

S.H. Cho and J.S. Bae, Common fixed point theorems for mappings satisfying property (E.A) on cone metric spaces, Math. Comput. Model. 53 (2011), 945–951.

M. Geraghty, On contractive mappings, Proc. Am. Math. Soc. 40 (1973), 604–608.

E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Am. Math. Soc., Providence (1957).

H.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2) (2007), 1468–1476.

E. Karapinar, P. Kumam and P. Salimi, On $alpha$-$psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013, Article ID 94 (2013).

M.A. Khamsi and V.Y. Kreinovich, Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, Math. Jpn. 44 (1996), 513–520.

V.S. Raj, A best proximity point theorem for weakly contractive non-selfmappings, Nonlinear Anal. 74 (2011), 4804–4808.

B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Am. Math. Soc. 226 (1977), 257–290.

B. Samet, C. Vetro and P. Vetro, Fixed point theorems for (alpha)-(psi)-contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165.

N. Shahzad, S.S. Basha and R. Jeyaraj, Common best proximity points: global optimal solutions, J. Optim. Theory Appl. 148 (2011), 69–78.

S.K. Yang, J.S. Bae and S.H. Cho, Coincidence and common fixed and periodic point theorems in cone metric spaces, Comput. Math. Appl. 61 (2011), 170–177.

DOI: http://dx.doi.org/10.26713%2Fcma.v7i1.332


  • There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905