Generalized Hilbert-Type Operator on Hardy Space

S. Naik, P. K. Nath


If \(f\) be an analytic function on the unit disc \(\mathbb{D}\) with Taylor series expansion \(\displaystyle f(z) = \sum_{n=0}^\infty a_nz^n\), we consider the generalized Hilbert-type operator defined by \(\displaystyle\mathcal{H}_{a,b}(f)(z)=\sum_{n=0}^\infty\left(\sum_{k=0}^\infty \frac{\Gamma(n+a+1)\Gamma(n+k+1)}{\Gamma(n+1)\Gamma(n+k+b+2)}a_k\right)z^n\) where \(\Gamma\) denotes the Gamma function and \(a, b \in\mathbb{C}\). We find an upper bound for the norm of the generalized Hilbert-type operator on Hardy space.


Generalized Hilbert-type operator; Hardy Spaces

Full Text:



G. E. Andrews, R Askey and R Roy, Special functions, Cambridge University Press, 1999.

A. Aleman and J.A. Cima, An integral operator on Hp and Hardy’s inequality, J. Anal. Math. 85 (2001) 157–176.

K. Avetisyan and S. Stevic, Extended Cesaro operators between different Hardy spaces, Appl. Math. Comput. 207 (2009) 346–350.

D.C. Chang, S. Li and S.Stevic, On some integral operators on the unit polydisc and the unit ball, Taiwan. J. Math. 11 (5) (2007) 1251–1286.

D.C. Chang and S.Stevic, Addendum to the paper ”A note on weighted Bergman spaces and the Cesaro operator”, Nagoya Math. J. 180 (2005) 77–90.

E. Diamantopolous, Hilbert matrix on Bergman spaces, Illinois J. Math. 48 (3) (2004) 1067–1028.

E. Diamantopolous and A. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 140(2), 2000, 191–198.

M. Dostanic, M. Jevtic and D. Vukotic, Norm of the Hilbert matrix on Bergman and

Hardy spaces and a theorem of Nehari type. J. Funct. Ana l. 254, 2008, 2800–2815.

P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1981.

G. Hardy, J. E. Littlewood and G. Poley, Inequalities, 2nd edition, Cambridge University Press, 1988.

S. Li, Generalized Hilbert operator on Dirichlet-type space, Applied Mathematics and Computation, 214, 2009, 304–309.

S. Li and S. Stevic, Generalized Hilbert operator and Fejer-Riesz type inequalities on the polydisc, Acta Math. Sci., 29(B)(1), 2009, 191–200.

J. R . Partington , An introduction to Hankel operators, London Math. Soc. student texts, Cambridge University Press, 13, 1988.

N. M. Temme, Special Functions: An introduction to the classical functions of mathematical physics, John Wiley, New York, 1996.



  • There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905