Meshless Radial Basis Function Pseudo-Spectral Method for Solving Non-linear KdV Equation

Authors

DOI:

https://doi.org/10.26713/cma.v14i3.2376

Keywords:

Collocation method, KdV equation, Radial basis function, Shape parameter

Abstract

The Korteweg-De Vries (KdV) problem is solved in this study using a meshless strategy based on the radial basis function. The nonlinear KdV equation is solved using the radial basis function in conjunction with the pseudo-spectral method. With the aid of a radial basis function, the method transforms the problem into a system of ODEs, which are subsequently solved by an ODE solver. The usefulness and efficiency of the strategy are assessed using two numerical examples. The numerical results are well-aligned with the exact solutions found in the literature.

Downloads

Download data is not yet available.

References

E. N. Aksan and A. Özde¸s, Numerical solution of Korteweg–de Vries equation by Galerkin B-spline finite element method, Applied Mathematics and Computation 175(2) (2006), 1256 – 1265, DOI: 10.1016/J.AMC.2005.08.038.

M. Arghand and M. Amirfakhrian, A meshless method based on the fundamental solution and radial basis function for solving an inverse heat conduction problem, Advances in Mathematical Physics 2015 (2015), Article ID 256726, DOI: 10.1155/2015/256726.

D. N. Arnold and R. Winther, A superconvergent finite element method for the Korteweg-de Vries equation, Mathematics of Computation 38(1570 (1982), 23 – 36, DOI: 10.2307/2007462.

G. Arora and G. S. Bhatia, Radial basis function pseudospectral method for solving standard Fitzhugh-Nagumo equation, International Journal of Mathematical, Engineering and Management Sciences 5(6) (2020), 1488 – 1497, DOI: 10.33889/IJMEMS.2020.5.6.110.

M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Part of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 272 pages (2003).

M. Dehghan and A. Shokri, A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dynamics 50 (2007), 111 – 120, DOI: 10.1007/s11071-006-9146-5.

G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences: Volume 6, World Scientific, Singapore, 520 pages (2007), DOI: 10.1142/6437.

B. Fornberg and N. Flyer, A Primer on Radial Basis Functions with Applications to the Geosciences, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 87, ix + 217 pages (2015), DOI: 10.1137/1.9781611974041.

H. Guan and S. Kuksin, The KdV equation under periodic boundary conditions and its perturbations, Nonlinearity 27(9) (2014), R61 – R88, DOI: 10.1088/0951-7715/27/9/R61.

R. Haberman, Applied Partial Differential Equations: With Fourier Series and Boundary Value Problems, 5th edition, Pearson Modern Classic, USA, (2021).

M. A. Helal, A Chebyshev spectral method for solving Korteweg–de Vries equation with hydrodynamical application, Chaos, Solitons & Fractals 12(5) (2001), 943 – 950, DOI: 10.1016/S0960-0779(00)00131-4.

E. J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics–I surface approximations and partial derivative estimates, Computers & Mathematics with Applications 19(8-9) (1990), 127 – 145, DOI: 10.1016/0898-1221(90)90270-T.

E. J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics–II solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & Mathematics with Applications 19(8-9) (1990), 147 – 161, DOI: 10.1016/0898-1221(90)90271-K.

O. T. Kolebaje and O. E. Oyewande, Numerical solution of the Korteweg De Vries equation by finite difference and Adomian decomposition method, International Journal of Basic and Applied Sciences 1(3) (2012), 321 – 335, DOI: 10.14419/ijbas.v1i3.131.

F.-L. Qu and W.-Q. Wang, Alternating segment explicit-implicit scheme for nonlinear third-order KdV equation, Applied Mathematics and Mechanics 28(7) (2007), 973 – 980, DOI: 10.1007/s10483-007-0714-y.

A. Safdari-Vaighani, E. Larsson and A. Heryudono, Radial basis function methods for the Rosenau equation and other higher order PDEs, Journal of Scientific Computing 75(3) (2018), 1555 – 1580, DOI: 10.1007/s10915-017-0598-1.

L. N. Trefethen, Spectral Methods in MATLAB, Software, Environments, and Tools series, Society for Industrial and Applied Mathematics, xvii + 163 pages (2000), DOI: 10.1137/1.9780898719598.

N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation and interaction, in: Nonlinear Partial Differential Equations: A Symposium on Methods of Solution, 223 – 258 (1967), Academic Press Inc., 1967, DOI: 10.1016/b978-1-4831-9647-3.50019-4

Downloads

Published

18-10-2023
CITATION

How to Cite

Dasari, S., & Parikh, A. (2023). Meshless Radial Basis Function Pseudo-Spectral Method for Solving Non-linear KdV Equation. Communications in Mathematics and Applications, 14(3), 1153–1160. https://doi.org/10.26713/cma.v14i3.2376

Issue

Section

Research Article