### On WH Packets in $L^2(\mathbb{R})$

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

P.G. Casazza, The art of frame theory,Taiwanese J. Math.4(2) (2000), 129–201.

O. Christensen,An Introduction to Frames and Riesz Bases, Birkhäuser, 2002.

O. Christensen, Frames perturbations,Proc. Amer. Math. Soc. 123 (1995), 1217–1220.

O. Chirstensen, A Paley-Wiener theorem for frames,Proc. Amer. Math. Soc. 123 (1995), 2199–2202.

I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthognal expansions, J. Math. Physics 27 (1986), 1271–1283.

R.J. Duffin and A.C. Schaeffer, A class of non-harmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366.

S.J. Favier and R.A. Zalik, On stability of frames and Riesz bases, Appl. Comp. Harm. Anal. 2(1995), 160–173.

D. Gabor, Theory of communications, J. IEE, London 93(3) (1946), 429–457.

C. Heil and D.Walnut, Continuous and Discrete Wavelet transform, SIAM Review 31 (1989), 628–666.

R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, AMS Colloquium Publications, 19, 1934.

DOI: http://dx.doi.org/10.26713%2Fcma.v3i3.216

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905