Periodic Wavelets in Walsh Analysis

Yu. A. Farkov


The main aim of this paper is to present a review of periodic wavelets related to the generalized Walsh functions on the $p$-adic Vilenkin group $G_p$. In addition, we consider several examples of wavelets in the spaces of periodic complex sequences. The case $p = 2$ corresponds to periodic wavelets associated with the classical Walsh functions.


Walsh functions; Periodic wavelets; Cantor dyadic group, $p$-adic Vilenkin group

Full Text:



S. Albeverio, S. Evdokimov, and M. Skopina, p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl. 16(5)(2010), 693–714.

J.J. Benedetto and R.L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14(3)(2004), 423–456.

S.A. Broughton and K.M. Bryan, Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing, John Wiley & Sons, Hoboken, NJ, 2009.

H.L. Chen and S.L. Peng, Localization of dual periodic scaling and wavelet functions, Adv. Comput. Math. 19(2003), 195–210

C.K. Chui and H.N. Mhaskar, On trigonometric wavelets, Constr. Approx. 9(1993), 167–190.

R.E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer Verlag, Berlin, 1982.

Yu.A. Farkov, Orthogonal wavelets with compact support on locally compact abelian group, Izvestiya: Mathematics 69(3)(2005), 623–650.

Yu.A. Farkov, Orthogonal wavelets on direct products of cyclic groups, Math. Notes 82(6)(2007), 843–859 .

Yu.A. Farkov and E.A. Rodionov, Estimates of the smoothness of dyadic orthogonal wavelets of Daubechies type, Math. Notes 86(3)(2009), 392–406.

Yu.A. Farkov, On wavelets related to the Walsh series, J. Approx. Theory 161(1) (2009), 259–279.

Yu.A. Farkov, Wavelets and frames based on Walsh-Dirichlet type kernels, Communic. Math. Appl. 1(2010), 27–46.

Yu.A. Farkov, A.Yu. Maksimov and S.A. Stroganov, On biorthogonal wavelets related to the Walsh functions, Int. J. Wavelets Multiresolut. Inf. Process. 9(3)(2011), 485–499.

Yu.A. Farkov and S.A. Stroganov, The use of discrete dyadic wavelets in image processing, Russian Math. (Iz. VUZ), 55(7)(2011), 47–55.

Yu.A. Farkov and E.A. Rodionov, Algorithms for wavelet construction on Vilenkin groups, p-Adic Numb. Ultr. Anal. Appl. 3(3)(2011), 181–195.

Yu.A. Farkov, Periodic wavelets on the p-adic Vilenkin group, p-Adic Numb. Ultr. Anal. Appl. 3(4)(2011), 281–287.

Yu.A. Farkov, Discrete wavelets and the Vilenkin-Chrestenson transform, Math. Notes 89(6)(2011), 871–884.

Yu.A. Farkov, U. Goginava and T. Kopaliani, Unconditional convergence of wavelet expansion on the Cantor dyadic group, Jaen J. Approx. 3(1)(2011), 117–133.

Yu.A. Farkov,Wavelets and frames in Walsh Analysis, inWavelets: Classification, Theory and Applications, Chapter 11, edited by Manel del Valle et al, Nova Science Publishers, New York, 267–304 (2012).

Yu.A. Farkov and M.E. Borisov, Periodic dyadic wavelets and coding of fractal functions, Russian Math. (Iz. VUZ) (2012), in press.

B. Fisher and J. Prestin, Wavelets based on orthogonal polynomials, Math. Computation 66(220)(1997), 1593–1618.

M.W. Frazer, An Introduction to Wavelets Through Linear Algebra, Springer-Verlag, New York, Inc., 1999.

B.I. Golubov, A.V. Efimov and V.A. Skvortsov, Walsh Series and Transforms: Theory and Applications, LKI, Moscow (2008); Klumer, Dordrecht (1991).

S.V. Kozyrev, Wavelet theory as $p$-adic spectral analysis, Izvestiya: Mathematics 66(2)(2002), 149–158.

W.C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal. 27(1)(1996), 305–312.

S.F. Lukomskii, Multiresolution analysis on zero-dimensional abelian groups and wavelets bases, Sbornik: Mathematics, 201(5) (2010), 669–691.

S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York — London, 1999.

I.E. Maksimenko and M.A. Skopina, Multivariate periodic wavelets, St. Petersburg Math. J. 15(2)(2004), 165–190.

I.Ya. Novikov, V.Yu. Protassov and M.A. Skopina, Wavelet Theory, Translations of Mathematical Monographs 239. Providence, RI: American Mathematical Society (AMS), 2011.

A.P. Petukhov, Periodic discrete wavelets, St. Petersburg Math. J. 8(3)(1996), 481–503.

A.P. Petukhov, Periodic wavelets, Sbornik: Mathematics 188(10)(1997), 1481–1506.

V.Yu. Protasov and Yu.A. Farkov, Dyadic wavelets and refinable functions on a half-line, Sbornik: Mathematics 197(10)(2006), 1529–1558.

V.Yu. Protasov, Approximation by dyadic wavelets, Sbornik: Mathematics 198(11)(2007), 1665–1681

F. Schipp, W.R. Wade and P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990.

Bl. Sendov, Multiresolution analysis of functions defined on the dyadic topological group, East J. Approx. 3(2)(1997), 225–239.

Bl. Sendov, Walsh-similar functions, East J. Approx. 5(1)(1999), 1–65.

Bl. Sendov, Adapted multiresolution analysis and wavelets, in: Proceedings of Alexits Memorial Conference “Functions, Series, Operators” (August 9-14, 1999), L. Leindler, F. Schipp and J. Szabados (editors), Budapest (2002), 23–38.

F.A. Shah, Construction of wavelet packets on the $p$-adic field, Int. J. Wavelets Multiresolut. Inf. Process. 7(5) (2009), 553–565.

F.A. Shah and L. Debnath, Dyadic wavelet frames on a half-line using theWalsh-Fourier transform, Integ. Transf. Spec. Funct. 22(7) (2011), 477–486.

V.M. Shelkovich and M. Skopina, $p$-adic Haar multiresolution analysis and pseudodifferential operators, J. Fourier Anal. Appl. 15 (3) (2009), 366–393.

M.A. Skopina, Multiresolution analysis of periodic functions, East J. Approx. 3(2)(1997), 203–224.

M.A. Skopina, Orthogonal polynomial Schauder bases in $C[−1,1]$ with optimal growth of degrees, Sbornik: Mathematics 192(3)(2001), 433–454.



  • There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905