Rayleigh Wave Propagation at Viscous Liquid/Micropolar Micro-stretch Elastic Solid





Micropolar micro-stretch elasticity, Viscous liquid layer, Rayleigh waves, Frequency equation


In this article, the governing equations of a homogeneous, isotropic micropolar microstretch elastic solid for xz-plane are considered and solved for surface wave propagation. Two types of frequency equations for Rayleigh waves are derived, in which one is along the free surface of micropolar micro-stretch elastic solid half space and another is at viscous liquid/micropolar micro-stretch solid interface. These are dispersive in nature. In the study of some particular cases, we observed that four types of Rayleigh waves are propagate, out of these, two waves are at free surface of generalized micropolar solid and micro-stretch solid and another two types of waves are at interface of viscous liquid/non-microstretch solid. In these four waves, three Rayleigh waves are dependent on solid density and one of them is non-dispersive in nature. Numerical example is considered for a particular solid and viscous liquid layer and the frequency curves are drawn and discussed with the help of MATLAB programme.


Download data is not yet available.


V. Chiroiu and L. Munteanu, Estimation of micropolar elastic moduli by inversion of vibrational data, Complexity International 9 (2002), 1 – 10,.

A. C. Eringen, Microcontinuum Field Theories, I. Foundations and Solid, 1st edition, Springer, New York, xvi + 325 (1999), DOI: 10.1007/978-1-4612-0555-5.

A. C. Eringen, Micropolar elastic solids with stretch, Prof. Dr. Mustafa ˙Inan Anisina ˙Istanbul ARI Kitapevi Matbaasi, ˙Istanbul, pp. 1 – 18.

A. C. Eringen, Linear theory of micropolar elasticity, Indiana University Mathematics Journal 15 (1966), 909 – 923, DOI: 10.1512/iumj.1966.15.15060.

A. C. Eringen, Theory of thermo-microstretch fluids and bubbly liquids, International Journal of Engineering Science 28(2) (1990), 133 – 143, DOI: 10.1016/0020-7225(90)90063-O.

A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple micro-elastic solids–II, International Journal of Engineering Science 2(4) (1964), 389 – 404, DOI: 10.1016/0020-7225(64)90017-5.

M. Fehler, Interaction of Seismic waves with a viscous liquid layer, Bulletin of the Seismological Society of America 72(1) (1982), 55– 72, DOI: 10.1785/BSSA0720010055.

R. Kumar and S. K. Tomar, Reflection and transmission of elastic waves at viscous liquid/micropolar elastic solid interface, International Journal of Mathematics and Mathematical Sciences 26 (2001), Article ID 697083, 10 pages, DOI: 10.1155/S0161171201005415.

R. Kumar and T. Kansal, Propagation of Lamb waves in transversely isotropic thermoelastic diffusive plate, International Journal of Solids and Structures 45(22-23) (2008), 5890 – 5913, DOI: 10.1016/J.IJSOLSTR.2008.07.005.

R. Kumar, S. Ahuja and S. K. Garg, Rayleigh waves in isotropic microstretch thermoelastic diffusion solid half space, Latin American Journal of Solids and Structures 11 (2014), 299 – 319, DOI: 10.1590/S1679-78252014000200009.

A. E. H. Love, Some Problems of Geodynamics, Cambridge University Press, Londan, 210 pages (2015), https://openlibrary.org/books/OL7127367M/Some_problems_of_geodynamics.

J. W. Miles, Dispersive reflection at the interface between ideal and viscous media, The Journal of the Acoustical Society of America 26(6) (1954), 1015 – 1018, DOI: 10.1121/1.1907439.

L. Rayleigh, On waves propagated along the plane surface of an elastic solid, Proceedings of the London Mathematical Society s1-17(1) (1885), 4 – 11, DOI: 10.1112/PLMS/S1-17.1.4.

J. N. Sharma, S. Kumar and Y. D. Sharma, Propagation of Rayleigh surface waves in microstretch thermoelastic continua under inviscid fluid loadings, Journal of Thermal Stresses 31 (2008), 18 – 39, DOI: 10.1080/01495730701737845.

H. H. Sherief, F. A. Hamza and H. A. Saleh, The theory of generalized thermoelastic diffusion, International Journal of Engineering Science 42(5-6) (2004), 591 – 608, DOI: 10.1016/j.ijengsci.2003.05.001.

R. Srinivas and K. Somaiah, Radial vibrations in unbounded micropolar elastic solid with fluid loaded spherical cavity, In: M. Singh, B. Kushvah, G. Seth and J. Prakash (eds.), Applications of Fluid Dynamics, Lecture Notes in Mechanical Engineering, Springer, Singapore, (2018), DOI: 10.1007/978-981-10-5329-0_31.




How to Cite

Somaiah, K., & Kumar, A. R. (2023). Rayleigh Wave Propagation at Viscous Liquid/Micropolar Micro-stretch Elastic Solid. Communications in Mathematics and Applications, 14(1), 89–103. https://doi.org/10.26713/cma.v14i1.1935



Research Article