Y-index of Different Corona Products of Graphs





Zagreb index, F-index, Y-index, Corona product


For a molecular graph \(G\), the \(Y\)-index is defined as the sum of fourth degree of all vertices of the graph. Among different products, corona product of two graphs is one of the most important. In this paper, we explore the explicit expressions of \(Y\)-index of different types of corona product of graphs.


Download data is not yet available.


H. Abdo, D. Dimitrov and I. Gutman, On extremal trees with respect to the F-index, Kuwait Journal of Science 44(3) (2017), 1 – 8, URL: https://journalskuwait.org/kjs/index.php/KJS/article/view/1616.

V. S. Agnes and C. Kannadasan, Y-index of four new tensor products of graphs and their complements, Indian Journal of Natural Sciences 12(70) (2022), 38995 – 39004.

V. S. Agnes, Degree distance and Gutman index of corona product of graphs, Transactions on Combinatorics 4(3) (2015), 11 – 23, DOI: 10.22108/toc.2015.6332.

A. Alameri, N. Al-Naggar, M. Al-Rumaima and M. Alsharafi, Y-index of some graph operations, International Journal of Applied Engineering Research 15(2) (2020), 173 – 179.

Y. Alizadeh, A. Iranmanesh, T. Došlic and M. Azari, The edge wiener index of suspensions, bottlenecks, and thorny graphs, Glasnik Matematicki 49(69) (2014), 1 – 12 DOI: 10.3336/gm.49.1.01.

H. Bian, X. Ma and E. Vumar, The Wiener-type indices of the corona of two graphs, Ars.Combin.107(2012), 193-199, DOI: ref.

N. De, Computing F-index of different corona products of graphs, Bulletin of Mathematical Sciences and Applications 19 (2017), 24 – 30, DOI: 10.18052/www.scipress.com/BMSA.19.24.

N. De, S. M. A. Nayeem and A. Pal, Modified eccentric connectivity index and polynomial of corona product of graphs, International Journal of Computer Applications 132(9) (2015), 1 – 5, DOI: 10.5120/ijca2015907536.

N. De, S. M. A. Nayeem and A. Pal, Total eccentricity index of the generalized hierarchical product of graphs, International Journal of Applied and Computational Mathematics 1 (2015), 503 – 511, DOI: 10.1007/s40819-014-0016-4.

B. Furtula and I. Gutman, A forgotten topological index, Journal of Mathematical Chemistry 53(4) (2015), 1184 – 1190, DOI: 10.1007/s10910-015-0480-z.

I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons, Chemical Physics Letters 17(4) (1972), 535 – 538, DOI: 10.1016/0009-2614(72)85099-1.

X. Liu and P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra and its Applications 438(8) (2013), 3547 – 3559, DOI: 10.1016/j.laa.2012.12.033.

R. Malpashree, Some degree and distance based topological indices of vertex-edge corona of two graphs, Journal of the International Mathematics Virtual Institute 6 (2016), 1 – 29, URL: http://www.imvibl.org/journal/6_16/journal_imvi_6_2016_1_29.pdf.

Z. Yarahmadi and A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26(3) (2012), 467 – 472, URL: https://www.jstor.org/stable/24895746.




How to Cite

Agnes, V. S., & Kannadasan, . C. (2023). Y-index of Different Corona Products of Graphs. Communications in Mathematics and Applications, 14(1), 131–141. https://doi.org/10.26713/cma.v14i1.1841



Research Article