Variational Analysis of an Electro-Elasto-Viscoplastic Contact Problem With Friction and Wear

Khezzani Rimi, Tedjani Hadj Ammar


We consider a dynamic contact problem with wear between two elastic-viscoplastic piezoelectric bodies. The contact is frictional and bilateral which results in the wear of contacting surface. The evolution of the wear function is described with Archard’s law. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.


Electro-elasto-viscoplastic materials; Internal state variable; Normal compliance; Wear; Evolution equations; Fixed point

Full Text:



O. Chau, J. R. Fernández, H. Han and M. Sofonea, Variational and numerical analysis of a dynamic frictionless contact problem with adhesion, Journal of Computational and Applied Mathematics 156 (2003), 127 – 157, DOI: 10.1016/s0377-0427(02)00909-3.

A. Djabi, A. Merouani and A. Aissaoui, A frictional contact problem with wear involving elasticviscoplastic materials with damage and thermal effects, Electronic Journal of Qualitative Theory of Differential Equations 27 (2015), 401 – 408, DOI: 10.14232/ejqtde.2015.1.27.

O. Kavian, Introduction à la théorie des points critiques et Applications aux équations elliptiques, Springer-Verlag (1993).

N. Kikuchi and J. T. Oden, Contact Problems in Elasticity, A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia (1988), DOI: 10.1137/1.9781611970845.

F. Maceri and P. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support, Mathematical and Computer Modelling 28 (1998), 19 – 28, DOI: 10.1016/s0895-7177(98)00105-8.

J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis: Theory, Methods & Applications 11 (1987), 407 – 428, DOI: 10.1016/0362-546x(87)90055-1.

S. Migórski, Hemivariational inequality for a frictional contact problem in elastopiezoelectricity, Discrete & Continuous Dynamical Systems – B 6 (2006), 1339 – 1356, DOI: 10.3934/dcdsb.2006.6.1339.

J. Neˇcas and I. Hlavácek, Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York (1981).

J. T. Oden and J. A. C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52 (1985), 527 – 634, DOI: 10.1016/0045-7825(85)90009-x.

M. Rochdi, M. Shillor and M. Sofonea, A quasistatic viscoelastic contact problem with normal compliance and friction, Journal of Elasticity 51 (1998), 105 – 126, DOI: 10.1023/A:1007413119583.

M. Sofonea and R. Arhab, An electro-viscoelastic contact problem with adhesion, Dynamics of Continuous, Discrete and Impulsive Systems 14 (2007), 577 – 991.

M. Sofonea and El-H. Essoufi, A piezoelectric contact problem with slip dépendent coefficient of friction, Mathematical Modelling and Analysis 9 (2004), 229 – 242, DOI: 10.3846/13926292.2004.9637256.

M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276, Chapman-Hall/CRC Press, New York (2005), DOI: 10.1201/9781420034837.

L. Zhor, Z. Zellagui, H. Benseridi and S. Drabla, Variational analysis of an electro viscoelastic contact problem with friction, Journal of the Association of Arab Universities for Basic and Applied Sciences 14 (2013), 93 – 100, DOI: 10.1016/j.jaubas.2012.10.001.



  • There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905