Strong and \(\Delta\)-Convergence Results for Generalized Nonexpansive Mapping in Hyperbolic Space

Samir Dashputre, C. Padmavati, Kavita Sakure

Abstract


In this paper, we propose a new iteration process which is faster than Picard Normal S-iteration process, Normal S-iteration process, Mann iteration process and Picard iteration process in hyperbolic space for generalized nonexpansive mapping. We also present strong and \(\Delta\)-convergence results for proposed iteration process. An illustrative example with different set of parameters is also given in this paper.


Keywords


Hyperbolic space; Generalized nonexpansive mappings; Picard normal S-iteration process; Normal S-iteration process

Full Text:

PDF

References


R. P. Agarwal, D. O’Regan and D. Sahu, Iterative construction of fixed points of nearly asymptotially nonexpansive mappings, Journal of Nonlinear and Convex Analysis 8(1) (2007), 61 – 79, URL: http://www.ybook.co.jp/online2/opjnca/vol8/p61.html.

J. Garcia-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications 375 (2011), 185 – 195, DOI: 10.1016/j.jmaa.2010.08.069.

M. Imdad and S. Dashputre, Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Mathematical Sciences 10(3) (2016), 131 – 138, DOI: 10.1007/s40096-016-0187-8.

S. Ishikawa, Fixed points by new iteration method, Proceedings of the American Mathematical Society 44 (1974), 147 – 150, DOI: 10.2307/2039245.

N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings by faster iteration process, Journal of Advanced Mathematical Studies 8(2) (2015), 257 – 264, URL: https://arxiv.org/abs/1402.6530.

A. P. Khan, H. Fukhar-ud-din and M. A. Khan, An implicit algorithm for two finite families of nonexpansive maps in Hyperbolic space, Fixed Point Theory and Applications 2012 (2012), Article number 54, DOI: 10.1186/1687-1812-2012-54.

U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Transactions of the American Mathematical Society 357(1) (2004), 89 – 128, URL: https://www.ams.org/journals/tran/2005-357-01/S0002-9947-04-03515-9/S0002-9947-04-03515-9.pdf.

L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, Journal of Mathematical Analysis and Applications 325(1) (2007), 386 – 399, URL: https://arxiv.org/abs/math/0511019.

L. Leustean, Nonexpansive iteration in uniformly convex W-hyperbolic space, in A. Leizarowitz, B. S. Mordukhovich, I. Shafrir and A. Zaslavski (eds.), Nonlinear Analysis and Optimization I. Nonlinear Analysis. Contemporary Mathematics, Vol. 513, pp. 193 – 210, Ramat Gan American Mathematical Society, Bar Ilan University, Providence (2010), URL: https://arxiv.org/abs/0810.4117.

W. R. Mann, Mean value methods in iterations, Proceedings of the American Mathematical Society 4 (1953), 506 – 510, URL: https://www.ams.org/journals/proc/1953-004-03/S0002-9939-1953-0054846-3/S0002-9939-1953-0054846-3.pdf.

M. A. Noor, New approximation scheme for general variational inequalities, Journal of Mathematical Analysis and Applications 251 (2000), 217 – 229, DOI: 10.1006/jmaa.2000.7042.

D. R. Sahu, Application of the S-iteration process to constrained minimization problems and feasibility problems, Fixed Point Theory 12 (2011), 187 – 204.

H. Schaefer, Uber die methode sukzessiver approximation, Jahresbericht der Deutschen Mathematiker-Vereinigung 59 (1970), 131 – 140, URL: https://eudml.org/doc/146424.

T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications 340 (2008), 1088 – 1095, DOI: 10.1016/j.jmaa.2007.09.023.

W. A. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Mathematical Seminar Reports 22 (1970), 142 – 149, URL: https://projecteuclid.org/euclid.kmj/1138846111.




DOI: http://dx.doi.org/10.26713%2Fcma.v11i3.1357

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905