Logarithmically Complete Monotonicity of Certain Ratios Involving the \(k\)-Gamma Function

Kwara Nantomah, Li Yin


In this paper, we prove logarithmically complete monotonicity properties of certain ratios of the \(k\)-gamma function. As a consequence, we deduce some inequalities involving the \(k\)-gamma function and the \(k\)-trigamma function.


\(k\)-gamma function; \(k\)-polygamma function; Logarithmically completely monotonic function; Inequality

Full Text:



M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th Printing, Washington, 1972, http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf.

H. Alzer and C. Berg, Some classes of completely monotonic functions, Ann. Acad. Scient. Fennicae 27 (2002), 445 – 460, https://www.acadsci.fi/mathematica/Vol27/alzer.pdf

C.-P. Chen, Complete monotonicity properties for a ratio of gamma functions, Ser. Mat. 16 (2005), 26 – 28, https://www.jstor.org/stable/pdf/43666610.pdf.

C.-P. Chen and J. Choi, Completely monotonic functions related to Gurland’s ratio for the gamma function, Math. Inequal. Appl. 20(3) (2017), 651 – 659, DOI: 10.7153/mia-20-43.

R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15 (2007) 179 – 192, https://www.emis.de/journals/DM/v15-2/art8.pdf.

C. G. Kokologiannaki and V. D. Sourla, Bounds for k-gamma and k-beta functions, J. Inequal. Spec. Funct. 4(3) (2013), 1 – 5,

V. Krasniqi, Inequalities and monotonicity for the ration of k-gamma functions, Scientia Magna 6(1) (2010), 40 – 45, http://fs.unm.edu/ScientiaMagna6no1.pdf#page=46.

A.-J. Li, W.-Z. Zhao and C.-P. Chen, Logarithmically complete monotonicity and Shur- convexity forsome ratios of gamma functions, Ser. Mat. 17 (2006), 88 – 92, https://www.jstor.org/stable/43660752.

M. Merkle, On log-convexity of a ratio of gamma functions, Ser. Mat. 8 (1997), 114 – 119, https://www.jstor.org/stable/43666390.

M. Merkle, Completely monotone functions: A digest, in Analytic Number Theory, Approximation Theory and Special Functions, G. Milovanovi´c and M. Rassias (eds.), Springer, New York, 347 – 3642014, DOI: 10.1007/978-1-4939-0258-3_12.

K. S. Miller and S. G. Samko, Completely monotonic functions, Integr. Transf. & Spec. Funct. 12(4) (2001), 389 – 402, DOI: 10.1080/10652460108819360.

S. Mubeen and S. Iqbal, Some inequalities for the gamma k-function, Adv. Inequal. Appl. 2015(2015), Article ID 10, 1 – 9, http://www.scik.org/index.php/aia/article/view/2252.

S. Mubeen, A. Rehman and F. Shaheen, Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal 44 (2014), 372 – 380.

F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7(1) (2004), Article ID 6, http://www.rgmia.org/papers/v7n1/minus-one.pdf.

A. Rehman, S. Mubeen, R. Safdar and N. Sadiq, Properties of k-beta function with several variables, Open Math. 13(1) (2015), 308 – 320, DOI: 10.1515/math-2015-0030.

L. Yin, L.-G. Huang, Z.-M. Song and X. K. Dou, Some monotonicity properties and inequalities for the generalized digamma and polygamma functions, J. Inequal. Appl. 2018 (2018), Article ID 249, 13 pages, DOI: 10.1186/s13660-018-1844-2.

L. Yin, L.-G. Huang, X.-L. Lin and Y.-L. Wang, Monotonicity, concavity, and inequalities related to the generalized digamma function, Adv. Difference Equ. 2018 (2018), Article ID 246, 9 pages, DOI: 10.1186/s13662-018-1695-7.

DOI: http://dx.doi.org/10.26713%2Fcma.v9i4.1108


  • There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905