Tribonacci and Tribonacci-Lucas Matrix Sequences with Negative Subscripts

Yüksel Soykan

Abstract


In this paper, we define Tribonacci and Tribonacci-Lucas matrix sequences with negative indices and investigate their properties.


Keywords


Tribonacci numbers; Tribonacci matrix sequence; Tribonacci-Lucas matrix sequence

Full Text:

PDF

References


M. Akbulak and D. Bozkurt, On the order-m generalized Fibonacci k-numbers, Chaos Solitons & Fractals 42(3) (2009), 1347 – 1355, DOI: 10.1016/j.chaos.2009.03.019.

M. Basu and M. Das, Tribonacci matrices and a new coding theory, Discrete Mathematics, Algorithms and Applications 6(1) (2014), 17 pages, DOI: 10.1142/S1793830914500086.

I. Bruce, A modified Tribonacci sequence, Fibonacci Quarterly 22(3) (1984), 244 – 246.

A. C. F. Bueno, A note on generalized tribonacci sequence, Notes on Number Theory and Discrete Mathematics 21(1) (2015), 67 – 69.

G. Cerda-Morales, On the third-order Jabosthal and third-order Jabosthal-Lucas sequences and their matrix representations, arxiv:1806.03709v1 [math.CO], 2018.

H. Civciv and R. Turkmen, Notes on the (s, t)-Lucas and Lucas matrix sequences, Ars Combinatoria 89 (2008), 271 – 285.

H. Civciv and R. Turkmen, On the (s, t)-Fibonacci and Fibonacci matrix sequences, Ars Combinatoria 87 (2008), 161 – 173.

E. Duchêne and M. Rigo, A morphic approach to combinatorial games: the tribonacci case, RAIRO – Theoretical Informatics and Applications 42(2) (2008), 375 – 393, DOI: 10.1051/ita:2007039.

M. Feinberg, Fibonacci-tribonacci, Fibonacci Quarterly 1(3) (1963), 71 – 74.

A. G. Fiorenza and G. Vincenzi, Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients, Chaos Solitons & Fractals 44(1-3) (2011), 147 – 152, DOI: 10.1016/j.chaos.2011.01.003.

H. H. Gulec and N. Taskara, On the (s, t)-Pell and (s, t)-Pell-Lucas sequences and their matrix representations, Applied Mathematics Letters 25 (2012), 1554 – 1559, DOI: 10.1016/j.aml.2012.01.014.

F. T. Howard and F. Saidak, Zhou’s theory of constructing identities, Congress Numer. 200 (2010), 225 – 237.

L. Marohnic and T. Strmecki, Plastic number: construction and applications, Advanced Research in Scientific Areas 2012 (2012), 1523 – 1528.

A. E. Park, J. J. Fernandez, K. Schmedders and M. S. Cohen, Fibonacci sequence: relationship to the human hand, The Journal of Hand Surgery 28(1) (2002), 157 – 160, DOI: 10.1053/jhsu.2003.50000.

S. Paul and P. S. Bruckman, Solution to problem H-487 (Proposed by Stanley Rabinowitz), Fibonacci Quarterly 33 (1995), p. 382.

T. Piezas, A tale of four constants, https://sites.google.com/site/tpiezas/0012.

S. Rabinowitz, Problem H-487, Fibonacci Quarterly 32 (1994), 187.

M. Randi´c., D. A. Morales and O. Araujo, Higher-order fibonacci numbers, Journal of Mathematical Chemistry 20(1) (1996), 79 – 94, DOI: 10.1007/BF01165157.

J. N. Ridley, Packing efficiency in sunflower heads, Mathematical Biosciences 58(1) (1982), 129 – 139, DOI: 10.1016/0025-5564(82)90056-6.

A. Scott, T. Delaney and V. Hoggatt Jr., The tribonacci sequence, Fibonacci Quarterly 15(3) (1977), 193 – 200.

A. Shannon, Tribonacci numbers and Pascal’s pyramid, Fibonacci Quarterly 15(3) (1977), 268 – 275.

N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/.

Y. Soykan, Matrix sequences of tribonacci and tribonacci-Lucas numbers, arXiv:1809.07809v1 [math.NT], 2018.

W. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quarterly 20 (1981), 118 – 120.

K. Uslu and S. Uygun, On the (s, t) Jacobsthal and (s, t) Jacobsthal-Lucas matrix sequences, Ars Combinatoria 108 (2013), 13 – 22.

S. Uygun and K. Uslu, (s, t)-Generalized Jacobsthal matrix sequences, Springer Proceedings in Mathematics & Statistics, Computational Analysis, Amat, Ankara, May 2015, 325 – 336, DOI: 10.1007/978-3-319-28443-9_23.

S. Uygun, Some sum formulas of (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas matrix sequences, Applied Mathematics 7 (2016), 61 – 69, DOI: 10.4236/am.2016.71005.

A. A. Wani, V. H. Badshah and G. B. S. Rathore, Generalized Fibonacci and k-Pell matrix sequences, Punjab University Journal of Mathematics 50(1) (2018), 68 – 79, http://pu.edu.pk/images/journal/maths/PDF/Paper-3_51_1_2019.pdf.

C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quarterly 10(3) (1972), 231 – 246.

Y. Yazlik, N. Taskara, K. Uslu and N. Yilmaz, The generalized (s; t)-sequence and its matrix sequence, American Institute of Physics (AIP) Conference Proceedings 1389, 381 – 384, 2012, DOI: 10.1063/1.3636742.

V. Yegnanarayanan, The chromatic number of generalized Fibonacci prime distance graph, Journal of Mathematics and Computational Science 2(5) (2012), 1451 – 1463, http://scik.org/index.php/jmcs/article/download/434/190.

N. Yilmaz and N. Taskara, Matrix sequences in terms of Padovan and Perrin numbers, Journal of Applied Mathematics 2013 (2013), Article ID 941673, 7 pages, DOI: 10.1155/2013/941673.

N. Yilmaz and N. Taskara, On the negatively subscripted Padovan and Perrin matrix sequences, Communications in Mathematics and Applications 5(2) (2014), 59 – 72, DOI: 10.26713/cma.v5i2.227.




DOI: http://dx.doi.org/10.26713%2Fcma.v11i1.1103

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905