### Some Fixed Point of Hardy-Rogers Contraction in Generalized Complex Valued Metric Spaces

#### Abstract

In this work, we defined the generalized complex valued metric space for some partial order relation and give some example. Then we study and established a fixed point theorem for general Hardy-Rogers contraction. The results extend and improve some results of Elkouch and Marhrani [5].

#### Keywords

#### Full Text:

PDF#### References

A. Azam, F. Brain and M. Khan, Common fixed point theorems in complex valued metric space, Numer.Funct.Anal. Optim. 32(3) (2011), 243 – 253.

S. Banach, Sur operations dams les ensembles abstraits et leur application aus equation integral, Fund. Math. 3(1922), 133 – 181.

V. Berinde, Iterative Approximation of fixed points, Lecture Notes in Mathematics, 2nd edition, Springer, Berlin (2007), DOI: 10.1007/978-3-540-72234-2.

S. K. Datta and S. Ali, A common fixed point theorems under contractive condition in complex valued metric space, International Journal of Advanced Scientific and Technical Research 6(2) (2012), 467 – 475.

Y. Elkouch and E. M. Morhrani, On some fixed point theorem in generalized metric space, Fixed Point Theory Applications 23(2017), 17 pages, DOI: 10.1186/s13663-017-0617-9.

G. D. Hardy and T. D. Roger, A generalization of a fixed point theorem of Riech, Can. Math. Bull. 16 (1973), 201 – 206.

M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015):65, pages 1 – 14, DOI: 10.1186/s13663-015-0312-7.

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71 – 76.

K. Khammahawong and P. Kumam, A best proximity point theorem for Roger–Hardy type generalized F-contractive mappings in complete metric spaces with some examples, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 112 (2018), 1503 – 1519, DOI: 10.1007/s13398-017-0440-5.

P. Saipara, P. Kumam and Y. J. Cho, Random fixed point theorems for Hardy-Rogers self-random operators with applications to random integral equations, An International Journal of Probability and Stochastic Processes 90(2) (2018), 297 – 311, DOI: 10.1080/17442508.2017.1346655.

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905