Stochastic Integrals and Power Contractions in Bernoulli Selections

Constantinos T. Artikis

Abstract


Random contractions and Bernoulli selections are recognized as strong analytical tools of probability distributions theory. The paper investigates the distribution of a Bernoulli selection incorporating a stochastic integral and a random contraction. Moreover, the paper establishes a practical interpretation of the formulated Bernoulli selection.

Keywords


Stochastic integral; Random contraction; Bernoulli selection

Full Text:

PDF

References


P.T. Artikis and C.T. Artikis, Stochastic models for risk control programs of organizations, Kybernetes: The International Journal of Systems & Cybernetics 39(4) (2010), 570 – 577, DOI: 10.1108/03684921011036790.

C.T. Artikis, A. Voudouri and T. Babalis, Stochastic vectors in modeling risk control operations for supporting intelligent behaviour of information systems, International Journal of Computational Intelligence Studies 4(3-4) (2015), 231 – 242, DOI: 10.1504/IJCISTUDIES.2015.072871.

I. Bazovsky, Reliability Theory and Practice, Dover Publications, New York (2004).

A. De Schepper, M. Goovaerts, J. Dhaene, R. Kaas and D. Vyncke, Bounds for present value functions with stochastic interest rates and stochastic volatility, Insurance: Mathematics and Economics 31 (2002), 87 – 103, DOI: 10.1016/S0167-6687(02)00126-9.

J. Galambos and I. Simonelli, Products of Random Variables, Marcel Dekker, New York (2004).

J.M. Harrison, Ruin problems with compounding assets, Stochastic Processes and their Applications 5 (1977), 67 – 79.

E. Hashorva, A.G. Pakes and Q. Tang, Asymptotics of random contractions, Insurance: Mathematics and Economics 47(3) (2010), 405 – 414, DOI: 10.1016/j.insmatheco.2010.08.006.

Z.J. Jurek, Selfdecomposability: an exception or a rule?, Annales Universitatis Mariae Curie Sklodowska, Lublin-Polonia Vol. LI, Sectio A (1997), pp. 93 – 107 (special volume dedicated to Professor Dominik Szynal).

G. Kervern, Latest Advances in Cindynics, Economica, Paris (1994).

N. Krishnaji, Characterization of the Pareto distribution through a model of underreported incomes, Econometrica 38 (1970), 251 – 255.

R. Olshen and L. Savage, A generalized unimodality, Journal of Applied Probability 7 (1970), 21 – 34. DOI: 10.2307/3212145.

H. Schwarzlander, Probability Concepts and Theory for Engineers, John Wiley & Sons, New York (2011).

F. Steutel and K. Van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, New York (2004).

H. Taha, Operations Research: An Introduction, Pearson Prentice Hall, New Jersey (2007).

D. Waters, Inventory Control and Management, John Wiley & Sons, New York (2007).

K. Ziha, Modeling of worsening, Journal of Systemics, Cybernetics and Informatics 10(4) (2012), 11 – 16, http://www.iiisci.org/journal/sci/FullText.asp?var=&id=HNB651OC




DOI: http://dx.doi.org/10.26713%2Fjims.v10i3.909

eISSN 0975-5748; pISSN 0974-875X