Laceability in Hanoi Graphs
Abstract
Keywords
Full Text:
PDFReferences
A. M. Hinz and D. Parisse, On the planarity of Hanoi graphs, Expo. Math. 20(3) (2002), 263 – 268.
M. Annapoorna and R. Murali, Hamiltonian Laceability in the line graph of the ((w,1,n,k)) graph, International Journal of Computer Application 5 (2015), 8 – 15.
C.-K. Li and I. Nelson, Perfect codes on the towers of Hanoi graph, Bulletin of the Australian Mathematical Society 57 (3) (1998), 367 – 376, DOI: 10.1017/s0004972700031774.
D. Arett and S. Doree, Colouring and counting on the tower of Hanoi graphs, Mathematical Association of America 83(3) (2010), 200 – 209, DOI: 10.4169/002557010x494841.
D. Berend, A. Sapir and S. Solomon, The Tower of Hanoi problem on path graphs, Discrete Applied Mathematics 160 (2012), 1465 – 1483, DOI: 10.1016/j.dam.2012.02.007.
D. Berend and A. Sapir, The diameter of Hanoi graphs, Information Processing Letters 98(2) (2006), 79 – 85, DOI: 10.1016/j.ipl.2005.12.004.
A. Girisha and R. Murali, Hamiltonian laceability in cyclic product and brick product of cycles, International Journal of Graph Theory 1(1) (2013), 32 – 40.
A. M. Hinz, The tower of Hanoi, Enseign. Math. 35(2) (1989), 289 – 321.
A. M. Hinz, Pascal’s triangle and the tower of Hanoi, Amer. Math. Monthly 99 (1992), 538 – 544, DOI: 10.1080/00029890.1992.11995888.
A. M. Hinz, The tower of Hanoi, in: K. P. Shum, E. J. Taft and Z. X. Wan (eds.), Algebras and Combinatorics, Springer, Singapore, 277 – 289 (1999).
L. N. Shenoy and R. Murali, Laceability on a class of regular graphs, International Journal of Computational Science and Mathematics 2(3) (2010), 397 – 406.
L. Xuemiao, Towers of Hanoi graphs, International Journal of Computer Mathematics 19(1) (1986), 23 – 38.
R. Kumar and U. Maheswari, Matrix representation of Hanoi graphs, International Journal of Science and Research 4(4) (2015), 173 – 174.
S. Aumann, K. A. M. Gotz, A. M. Hinz and C. Petr, The number of moves of the largest disc in shortest path on Hanoi graphs, The Electronic Journal of Combinatorics 21(4) (2014), 1 – 22.
S. Klavzar and U. Milutinovic, Graphs S(n,k) and a variant of the tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997), 95 – 104, URL: http://dml.cz/dmlcz/127341.
DOI: http://dx.doi.org/10.26713%2Fjims.v11i3-4.789
eISSN 0975-5748; pISSN 0974-875X
