Optimality in Multiobjective Subset Fractional Programming Involving Generalized Type \(n\)-Functions

Meraj Ali Khan, Amira A. Ishan

Abstract


In this paper we investigate the optimality in multiobjective subset fractional programming involving generalized type \(n\)-functions under \((F,\alpha,\rho, d)\)-type-I function. The results presented in this paper extend several results from the literature.

Keywords


Sufficiency; Fractional programming, \(n\)-functions

References


I. Ahmad and S. Sharma, Sufficiency in multiobjective subset programming involving generalized type-I functions, J. Glob. Optim. 39(3) (2007), 473 – 481, DOI: 10.1007/s10898-007-9150-4.

C.R. Bector, D. Bhatia and S. Pandey, Efficiency and duality for nonlinear multiobjective programs involving n-set functions, J. Math. Anal. Appl. 182 (1994), 486 – 500, DOI: 10.1006/jmaa.1994.1099.

D. Bhatia and P. Kumar, A note on fractional minmax programs containing n-set functions, J. Math. Anal. Appl. 215(2) (1997), 283 – 293.

D. Bhatia and A. Mehra, Lagrange duality in multiobjective fractional programming problems with n-set functions, J. Math. Anal. Appl. 236 (1999), 300 – 311, DOI: 10.1006/jmaa.1999.6425.

J.H. Chou, W.S. Hsia and T.Y. Lee, On multiple objective programming problems with set functions, J. Math. Anal. Appl. 105 (1985), 383 – 394, DOI: 10.1016/0022-247X(85)90055-1.

H.W. Corley, Optimization theory for n-set functions, J. Math. Anal. Appl. 127 (1987), 193 – 205, DOI: 10.1016/0022-247X(87)90151-X.

H.W. Corley and S.D. Roberts, A partitioning problem with applications in regional design, Oper. Res. 20 (1972), 1010 – 1019, DOI: 10.1287/opre.20.5.1010.

G. Dantzig and A. Wald, On the fundamental lemma of Neyman and Pearson, Ann. Math. Stat. 22 (1951), 87 – 93.

N. Datta, Efficiency in multi-objective fractional programming, J. Inform. Optim. Sci. 3 (1982), 262 – 268.

W. Dinklebach, On nonlinear fractional programming, Management Science 137 (1967), 492 – 498, DOI: 10.1287/mnsc.13.7.492.

A.M. Geoffrion, Proper efficiency and theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618 – 630, DOI: 10.1016/0022-247X(68)90201-1.

M. Hachimi and B. Aghezzaf, Sufficiency and duality in differentiable multiobjective programming involving generalized type-I functions, J. Math. Anal. Appl. 296 (2004), 382 – 392, DOI: 10.1016/j.jmaa.2003.12.042.

M.A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Math. Program 37 (1987), 51 – 58, DOI: 10.1007/BF02591683.

R. Jagannathan, Duality for nonlinear fractional programs, Zeitschrift fur Operations Research 17 (1973), 1 – 3, DOI: 10.1007/BF01951364.

C.L. Jo, D.S. Kim and G.M. Lee, Duality for multiobjective fractional programming involving n-set functions, Optimization 29 (1994), 45 – 54, DOI: 10.1080/02331939408843935.

R.N. Kaul and V. Lyall, A note on nonlinear fractional vector maximization, Opsearch 26 (1989), 108 – 121.

D.S. Kim, C.L. Jo and G.M. Lee, Optimality and duality for multiobjective fractional programming involving n-set functions, J. Math. Anal. Appl. 224 (1998), 1 – 13.

H.C. Lai and J.C. Liu, Duality for a minmax programming problem containing n-set functions, J. Math. Anal. Appl. 229 (1999), 587 – 604.

Z.A. Liang, H.X. Huang and P.M. Pardalos, Efficiency conditions and duality for a class of multiobjective fractional programming problems, J. Glob. Optim. 27 (2003), 447 – 471, DOI: 10.1023/A:1026041403408.

L.J. Lin, Optimality of differentiable vector-valued n-set functions, J. Math. Anal. Appl. 149 (1990), 255 – 270, DOI: 10.1016/0022-247X(90)90299-U.

J.C. Liu, Optimality and duality for multiobjectional programming involving non-smooth pseudoinvex functions, Optimization 37 (1996), 27 – 39, DOI: 10.1080/02331939608844194.

R.J.T. Morris, Optimal constrained selection of a measurable set, J. Math. Anal. Appl. 70 (1979), 546 – 562, DOI: 10.1016/0022-247X(79)90064-7.

R.N. Mukherjee, Generalized convex duality for multiobjective fractional programs, J. Math. Anal. Appl. 162 (1991), 309 – 316, DOI: 10.1016/0022-247X(91)90151-O.

J. Neyman and E.S. Pearson, On the problem of themost efficient tests of statistical hypotheses, Philos. Trans. R. Soc. Lond. Ser. A 231 (1933), 289 – 337.

R. Osuna-Gómez, A. Rufián-Lizana and P. Ruíz-Canales, Multiobjective fractional programming with generalized invexity, Sociedad de Estadistica e investigacion operativa TOP 8(1) (2000), 97 – 110, DOI: 10.1007/BF02564830.

V. Preda, On minmax programming problems containing n-set functions, Optimization 22 (1991), 527 – 537, DOI: 10.1080/02331939108843695.

V. Preda, I.M. Stancu-Minasian and E. Koller, On optimality and duality for multiobjective programming problems involving generalized d-type-I and related n-set functions, J. Math. Anal. Appl. 283 (2003), 114 – 128, DOI: 10.1016/S0022-247X(03)00242-7.

S. Schaible, A survey of factional programming, in Generalized Convexity in Optimization and Economics, S. Schaible and W.T. Ziemba (Eds.), Academic Press (1981).

C. Singh and M.A. Hanson, Saddlepoint theory for nondifferentiable multiobjective fractional programming, J. Inform. Optim. Sci. 7 (1986), 41 – 48.

C. Singh, S.K. Suneja and N.G. Rueda, Preinvexity in multiobjective fractional programming, J. Inform. Optim. Sci. 13 (1992), 293 – 302.

S.K. Suneja and M.K. Srivastava, Duality in multiobjective fractional programming involving generalized invexity, Operational Research Society of India 31 (1994), 127 – 143.

P.K.C. Wang, On a class of optimization problems involving domain variations, in Lecture Notes in Control and Information Sciences 2, Springer, Berlin (1977).

T. Weir, Duality for nondifferentiable multiple objective fractional programming problems, Utilitas Math. 36 (1989), 53 – 64.

G.J. Zalmai, Sufficiency criteria and duality for nonlinear programs involving n-set functions, J. Math. Anal. Appl. 149 (1990) , 322 – 338.




DOI: http://dx.doi.org/10.26713%2Fjims.v10i4.693

eISSN 0975-5748; pISSN 0974-875X