Electronically Reconfigurable HM-SIW Band-pass Filter Based on New CSRR Design Using PIN Diodes

Hichem Boubakar, Mehadji Abri, Mohamed Benaissa

Abstract


In this paper, a novel and original reconfigurable half-mode substrate integrated waveguide (HM-SIW) band-pass filter (BPF) is proposed. The proposed BPF is composed of two different size new design complementary split-ring resonators to achieve the compact size, and two PIN diodes to achieve the reconfigurability. This filter can function in three different cases according to the ON/OFF combination states of the PIN diodes. The operating state can either be a dual-band-pass filter with resonant frequencies 2.5GHz and 3.6 GHz that have measured return loss (RL) less than -23 dB and -25 dB, respectively. Or it can operate as a single-band-pass filter in two other cases. The resonant frequency of the first is 2.6 GHz that has a measured RL of -20 dB, and for the second one, the resonant frequency is 3.35 GHz that has -35 dB as a measured RL. Moreover, the measured insertion loss (IL) is better than 1 dB for all the cases. The size of this filter design is 26.3mm x 12mm which makes it a very compact device considering that it functions in the S-band compared to publish work that targets the same frequency band.


Keywords


HM-SIW; Metamaterial; CSRR; PIN diode; Reconfigurable

Full Text:

PDF

References


G. Angiulli, D. De Carlo, G. Amendola, E. Arnieri and S. Costanzo, Support vector regression machines to evaluate resonant frequencies of elliptic substrate integrated waveguide resonators, Progress in Electromagnetics Research 83 (2008), 107 – 18, DOI: 10.2528/PIER08041803.

A. Bakhtafrooz, A. Borji, D. Busuioc and S. Safavi-Naeini, Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides, Progress in Electromagnetics Research 109 (2010), 475 – 491, DOI: 10.2528/PIER10091706.

B. Belkadi, Z. Mahdjoub, M. L. Seddiki and M. Nedil, A selective frequency reconfigurable bandstop metamaterial filter for WLAN Applications, Turkish Journal of Electrical Engineering & Computer Sciences 26 (2018), 2976 – 2985, DOI: 10.3906/elk-1802-95.

F. Benzerga, M. Abri and H. Abri Badaoui, Optimized bends and corporate 1£4 and 1£8 siw power dividers junctions analysis for V-band applications using a rigorous finite element method, Arabian Journal for Science and Engineering 41 (2016), 3335 – 3343, DOI: 10.1007/s13369-015-1823-6.

H. Boubakar, M. Abri and M. Benaissa, Electronically wwitchable SIW band-pass filter based on S-CSRR using PIN diodes for WI-FI applications, in: International Conference in Artificial Intelligence in Renewable Energetic Systems, Springer, Cham. (2020), pp. 738 – 746.

A. Boutejdar, Design of 5 GHz-compact reconfigurable DGS-bandpass filter using varactor-diode device and coupling matrix technique, Microwave and Optical Technology Letters 58(2) (2016), 304 – 309, DOI: 10.1002/mop.29561.

W. Y. Chen, M. H. Weng, S. J. Chang, H. Kuan and Y. H. Su, A new tri band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators, Progress in Electromagnetics Research 124 (2012), 365 – 381, DOI: 10.2528/PIER11122010.

G. F. Craven and C. K. Mok, The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic, IEEE Transactions on Microwave Theory and Techniques 19 (3) (1971), 295 – 308, DOI: 10.1109/TMTT.1971.1127503.

CST, CST Microwave Studio, Computer Simulation Technologyc, Framingham, MA, www.cst.com.

D. Deslandes and K. Wu, Integrated microstrip and rectangular waveguide in planar form, IEEE Microwave and Wireless Components Letters 11(2) (2001), 68 – 70, DOI: 10.1109/7260.914305.

Y. Dong and T. Itoh, Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures, IEEE Transactions on Antennas and Propagation 59(3) (2011), 767 – 775, DOI: 10.1109/TAP.2010.2103025.

Y. D. Dong, T. Yang and T. Itoh, Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters, IEEE Transactions on Microwave Theory and Techniques 57(9) (2009), 2211 – 2223, DOI: 10.1109/TMTT.2009.2027156.

J. Esteban, C. Camacho-Penalosa, J. E. Page, T. M. Martin-Guerrero and E. Marquez-Segura, Simulation of negative permittivity and negative permeability by means of evanescent waveguide modes theory and experiment, IEEE Transactions on Microwave Theory and Techniques 53(4) (2005), 1506 – 1514, DOI: 10.1109/TMTT.2005.845194.

S. H. Fu and C. M. Tong, A novel CSRR based defected ground structure with dualba ndgap characteristics, Microwave & Optical Technology Letters 51(12) (2010), 2908 – 2910, DOI: 10.1002/mop.24776.

R. V. Garver, Microwave Diode Control Devices, Artech House (1977).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa and H. Toshiyoshi, Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array, IEEE Journal of Selected Topics in Quantum Electronics 21(4) (2015), 114 – 122, DOI: 10.1109/JSTQE.2014.2378591.

A. K. Horestani, Z. Shateria, J. Naqui, F. Martín and C. Fumeaux, Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas, IEEE Transactions on Antennas and Propagation 64 (2016), 3766 – 3776, DOI: 10.1109/TAP.2016.2585183.

A. M. Nicolson and G. F. Ross, Measurement of the intrinsic properties of materials by timedomain techniques, IEEE Transactions on Instrumentation and Measurement 19 (1970), 377 – 382, DOI: 10.1109/TIM.1970.4313932.

A. Noura, M. Benaissa, M. Abri, H. Badaoui, T.-H. Vuong and J. Tao, Miniaturized half-mode SIW band-pass filter design integrating dumbbell DGS cells, Microwave and Optical Technology Letters 61(6) (2019), 1473 – 1477, DOI: 10.1002/mop.31779.

A. Ourir, R. Abdeddaim and J. de Rosny, Tunable trapped mode in symmetric resonator designed for metamaterials, Progress in Electromagnetics Research 101 (2010), 115 – 123, DOI: 10.2528/PIER09120709.

M. A. Rabah, M. Abri, H. A. Badaoui, J. Tao and T. H. Vuong, Compact miniaturized half-mode waveguide/high pass-filter design based on SIW technology screens transmit-IEEE C-band signals, Microwave and Optical Technology Letters 58 (2016), 414 – 418, DOI: 10.1002/mop.29576.

M. A. Rabah, M. Abri, J. W. Tao and T. Vuong, Substrate integrated waveguide design using the two-dimensional element method, Progress In Electromagnetics Research M 35 (2014), 21 – 30, DOI: 10.2528/PIERM14010702.

M. L. Seddiki, M. Nedil, F. Ghanem and T. A. Denidni, Frequency reconfigurable quasi-Yagi antenna using variable-length transmission line resonator, 2016 16th Mediterranean Microwave Symposium, Abu Dhabi, United Arab Emirates (2016), 14 – 16, DOI: 10.1109/MMS.2016.7803834.

V. Sekar, M. Armendariz and K. Entesari, A 1.2–1.6GHz substrate-integrated-waveguide RF MEMS tunable filter, IEEE Transactions on Microwave Theory and Techniques 59 (2011), 866 – 876, DOI: 10.1109/TMTT.2011.2109006.

H.-J. Tsai, B.-C. Huang, N.-W. Chen and S.-K. Jeng, A reconfigurable bandpass filter based on varactor-perturbed, T-shaped dual-mode resonator, IEEE Microwave and Wireless Components Letters 24(5) (2014), 297 – 299, DOI: 10.1109/LMWC.2014.2306893.

R. -L. Wang, J.-F. Wang, Y.-F. Li, M.-B. Yan, Z.-Q. Li, H. Ma and S.-B. Qu, Dual-band suspended stripline filter based on metamaterials, Microwave and Optical Technology Letters 59(9) (2017), 2297 – 2302, DOI: 10.1002/mop.30727.

R. F. Xu, B. S. Izquierdo and P. R. Young, Switchable substrate integrated waveguide, IEEE Microwave and Wireless Components Letters 21(4) (2011), 194 – 196, DOI: 10.1109/LMWC.2011.2108274.




DOI: http://dx.doi.org/10.26713%2Fjims.v13i1.1567

eISSN 0975-5748; pISSN 0974-875X