An Analytical Study of Dispersion and Wall Absorption with Effect of Viscoelasticity and Magnetic Field

Venkataswamy K. V., Jagadeesha S., Indira Ramarao

Abstract


In the present study an unsteady convective diffusive mass transfer in a flow of viscoelastic fluid flow in a concentric annulus with applied magnetic field is considered. The velocity is analytically obtained using no-slip condition. The species equation is solved by adopting a dispersion model used by Gill and Sankarasubramanian approach. The parameters like dispersion and convection coefficients which arise in the analysis are plotted against absorption parameter for different values of Hartmann number and viscoelastic parameter. The effect of viscoelastic parameter is to increase the convective coefficient and dispersion coefficient. Dispersion increases with absorption but convection decreases. The results are numerically evaluated and graphically depicted.


Keywords


Viscoelastic fluid; Magnetic field; Wall absorption; Catheter; Concentric annulus

Full Text:

PDF

References


S. Agarwal and G. Jayaraman, Numerical simulation of dispersion in the flow of power law fluids in curved tubes, Applied Mathematical Modelling 18 (1994), 504 – 512, DOI: 10.1016/0307-904X(94)90329-8.

R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 235 (1956) 67 – 77, DOI: 10.1098/rspa.1956.0065.

T. Boddington and A. A. Clifford, The dispersion of a reactive species (atomic hydrogen) in a flowing gas, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 389 (1983), 179 – 196, DOI: 10.1098/rspa.1983.0102.

A. A. Clifford, P. Gray, R. S. Mason and Waddicor, Measurement of the diffusion coefficients of the reactive species in dilute gases, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 380 (1982), 241 – 258, DOI: 10.1098/rspa.1982.0040.

R. K. Dash, G. Jayaraman and K. N. Mehta, Shear augmented dispersion of a solute in a Casson fluid flowing in a conduit, Annals of Biomedical Engineering 28 (2000), 373 – 385, DOI: 10.1114/1.287.

A. E. DeGance and L. E. Johns, On the construction of dispersion approximations to the solution of convective diffusive equation, AIChE Journal 26 (1980), 411 – 419, DOI: 10.1002/aic.690260313.

G. Jayaraman, T. J. Pedley and A. Goyal, Dispersion of solute in a fluid flowing through a curved tube with absorbing walls, The Quarterly Journal of Mechanics and Applied Mathematics 51 (1988), 577 – 598, DOI: 10.1093/qjmam/51.4.577.

Y. Jiang and J. B. Grotberg, Bolus contaminant dispersion in oscillatory tube flow with conductive walls, Journal of Biomechanical Engineering 115 (1993), 424 – 431, DOI: 10.1115/1.2895507.

E. M. Lungu and H. K. Moffat, The effect of wall conductance on heat diffusion in duct flow, Journal of Engineering Mathematics 16 (1982), 121 – 136, DOI: 10.1007/BF00042550.

S. Nadeem and N. S. Akbar, Influence of heat and mass transfer on peristaltic flow of Jeffery fluid in an annulus, Heat and Mass Transfer 46 (2010), 485 – 493, DOI: 10.1007/s00231-010-0585-7.

P. Nagarani, Effect of boundary absorption on dispersion in cassson fluid flow in an annulus: application to catheterized artery, Acta Mechanica 202 (2009), 47 – 63, DOI: 10.1007/s00707-008-0013-y.

R. Sankarasubramanian, W. N. Gill and T. B. Benjamin, Unsteady convective diffusion with interphase mass transfer, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 333 (1973), 115 – 132, DOI: 10.1098/rspa.1973.0051.

M. K. Sharp, Shear-augmented dispersion in non-Newtonian fluids, Annals of Biomedical Engineering 21 (1993), 407 – 415, DOI: 10.1007/BF02368633.

G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 219 (1953), 186 – 203, DOI: 10.1098/rspa.1953.0139.




DOI: http://dx.doi.org/10.26713%2Fjims.v11i3-4.1347

eISSN 0975-5748; pISSN 0974-875X