Realization of a Method for Calculating Bell Polynomials Based on Compositae of Generating Functions

Vadim S. Melman, Yuriy V. Shablya, Dmitry V. Kruchinin, Alexander A. Shelupanov

Abstract


In this paper different computational methods for calculating partial and n-th complete Bell polynomials are considered. As one of the new methods, the authors propose to use the method for calculating Bell polynomials, which is based on compositae of generating functions. This method was realized by the authors in the form of a library for Wolfram Mathematica and compared with the built-in methods of Wolfram Mathematica and Maple. The results of the comparison demonstrate the advantage of the realization of the new method over the existing ones in spending time and memory for calculating.

Keywords


Bell polynomial; Calculation; Generating function; Composition; Composita; Library, Wolfram Mathematica

Full Text:

PDF

References


A. Bayad, Y. Simsek and H.M. Srivastava, Some array type polynomials associated with special numbers and polynomials, Appl. Math. Comput. 244 (2014), 149 – 157.

E.T. Bell, Partition polynomials, Ann. of Math. (2) 29(1/4) (1927-1928), 38 – 46.

D. Birmajer, J.B. Gil and M.D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, Discrete Math. 340(4) (2017), 563 – 571.

V.P. Bubnov, A.S. Eremin, N.A. Kovrizhnykh and I.V. Olemskoy, Comparative study of the advantages of structural numerical integration methods for ordinary differential equations, SPIIRAS Proceedings 4(53) (2017), 51 – 72.

L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company (1974).

C. Gilson, F. Lambert, J. Nimmo and R. Willox, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. A 452(1945) (1996), 223 – 234.

Y. Jiang, B. Tian, W.-J. Liu, M. Li, P. Wang and K. Sun, Solitons, Backlund transformation, and Lax pair for the (2Å1)-dimensional Boiti-Leon-Pempinelli equation for the water waves, J. Math. Phys. 51(9) (2010), 1 – 11.

D.S. Kim and T. Kim, Some identities of Bell polynomials, Sci. China Math. 58(10) (2015), 1 – 10.

U. Kotta and M. Tonso, NLControl – a Mathematica package for nonlinear control systems, IFACPapersOnLine 50(1) (2017), 681 – 686.

M.I. Krivoruchenko, Trace identities for skew-symmetric matrices, Mathematics and Computer Science 1(2) (2016), 21 – 28.

V. Kruchinin, Derivation of Bell polynomials of the second kind, arXiv:1104.5065v1 (2011), 1 – 15.

D.V. Kruchinin and V.V. Kruchinin, A method for obtaining generating functions for central coefficients of triangles, J. Integer Seq. 15 (2012), 1 – 10.

D.V. Kruchinin and V.V. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, J. Math. Anal. Appl. 404(1) (2013), 161 – 171.

D.V. Kruchinin and V.V. Kruchinin, Explicit formulas for some generalized polynomials, Appl. Math. Inf. Sci. 7(5) (2013), 2083 – 2088.

V.V. Kruchinin and D.V. Kruchinin, Composita and its properties, Journal of Analysis and Number Theory 2 (2014), 37 – 44.

D.V. Kruchinin, Y.V. Shablya, O.O. Evsutin and A.A. Shelupanov, Integer properties of a composition of exponential generating functions, in: Proc. Intl. Conf. of Numerical Analysis and Applied Mathematics, T. Simos and C. Tsitouras (eds.), American Institute of Physics Inc., 2017, pp. 1 – 4.

K.J. Larsen and R. Rietkerk, MULTIVARIATERESIDUES: A Mathematica package for computing multivariate residues, Comput. Phys. Commun. 222 (2018), 250 – 262.

P.-L. Ma, S.-F. Tian, L. Zou and T.-T. Zhang, The solitary waves, quasi-periodic waves and integrability of a generalized fifth-order Korteweg-de Vries equation, Waves Random Complex Media (2018), 1 – 17.

V.A. Melnikova, Algorithm for partition polinomials analytical derivation, Systems, Methods, Technologies 3(19) (2013), 112 – 116.

P. Natalini and P.E. Paolo, Remarks on Bell and higher order Bell polynomials and numbers, Cogent Mathematics 3 (2016), 1 – 15.

D. Pelinovsky, J. Springael, F. Lambert and I. Loris, On modified NLS, Kaup and NLBq equations: Differential transformations and bilinearization, J. Phys. A: Math. Gen. 30(24) (1997), 8705 – 8717.

F. Qi and M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput. 258 (2015), 597 – 607.

F. Qi, X.-T. Shi, F.-F. Liu and D.V. Kruchinin, Several formulas for special values of the bell polynomials of the second kind and applications, J. Appl. Anal. Comput. 7(3) (2017), 857 – 871.

F. Qi and B.-N. Guo, Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials, Mediterr. J. Math. 14(3) (2017), 1 – 14.

J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press (2016).

S. Roman, The Umbral Calculus, Academic Press (1984).

J. Squire, J. Burby and H. Qin, VEST: Abstract vector calculus simplification in Mathematica, Comput. Phys. Commun. 185(1) (2014), 128 – 135.

R.P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press (1999).

J.-M. Tu, S.-F. Tian, M.-J. Xu, P.-L. Ma and T.-T. Zhang, Solitons, Backlund transformation, and Lax pair for the ((2+1))-dimensional Boiti-Leon-Pempinelli equation for the water waves, Computers and Mathematics with Applications 72(9) (2016), 2486 – 2504.

Y.-L. Wang, Y.-T. Gao, S.-L. Jia, G.-F. Deng and W.-Q. Hu, Solitons for a ((2+1))-dimensional variable coefficient Bogoyavlensky-Konopelchenko equation in a fluid, Modern Phys. Lett. B 31(25) (2017), 1 – 18.

W. Wang, Euler sums and Stirling sums, J. Number Theory 185 (2018), 160 – 193.

F.S. Wheeler, Bell polynomials, ACM SIGSAM Bulletin 21(3) (1987), 44 – 53.

J.-L. Zhao and F. Qi, Two explicit formulas for the generalized Motzkin numbers, J. Inequal. Appl. 2017(1) (2017), 1 – 8.




DOI: http://dx.doi.org/10.26713%2Fjims.v10i4.1046

eISSN 0975-5748; pISSN 0974-875X