Nonlinear Radiative Effects on MHD Flow Past a Nonlinearly Stretching Surface Embedded in a Porous Medium

A. David Maxim Gururaj, S.P. Anjali Devi

Abstract


An analysis has been carried out to investigate the steady, laminar, two dimensional hydromagnetic flows with heat transfer of an incompressible, viscous and electrically conducting fluid over a surface stretching with a power-law velocity distribution and embedded in a porous medium in the presence of a variable magnetic field. The radiative heat flux term is taken to be nonlinear using Rosseland diffusion approximation. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. Then the resulting nonlinear ordinary differential equations are solved numerically using Fourth-Order Runge-Kutta based shooting method along with Nachtsheim-Swigert iteration scheme for satisfaction of asymptotic boundary conditions and the numerical results for velocity and temperature distribution are obtained for different values of radiation parameter, permeability, velocity exponent parameter, surface temperature parameter, magnetic interaction parameter and Prandtl number. The dimensionless rates of heat transfer and skin friction coefficient are also obtained for different physical parameters and are presented graphically.


Keywords


Nonlinear Radaitive heat flux; Rosseland diffusion approximation; porous medium; Nachtsheim-Swigert iteration scheme and nonlinearly stretching surface

Full Text:

PDF

References


R.A. Wooding, Fluid Mech. 15 (1963), 525 – 544.

D. Moalem, Int. J. Heat Mass Transfer 19 (1976), 529 – 537.

K. Vajravelu, ZAMM 74(12) (1994), 605 – 614.

A. Sri Ramulu, N. Kishan and J. Anand Rao, Journal of Energy, Heat and Mass Transfer 23 (2001), 483 – 495.

E.M.A. Elbashbeshy and M.A.A. Bazid, Appl. Math. Comput. 158(3) (2004), 799 – 807.

S. Pamuk, Physics Letters A 344 (2005), 184 – 188.

I.C. Liu, Transport in Porous Media 64(3) (2006), 375 – 392.

D.A. Nield, Journal of Heat Transfer 129 (2007), p. 1459.

M.A. Mansour, The Chemical Engineering Journal 145(2) (2008), 340 – 345.

S.P.A. Devi and B. Ganga, Nonlinear Analysis: Modelling and Control 14 (2009), 303 – 314.

O.A. Plumb, J.S. Huensfield and E.J. Eschbach, AIAA 16th Termophysics Conference, Palo Alto, pp. 23 – 25 (1981).

C.K. Chen and M.I. Char, Journal of Mathematical Analysis and Applications 135 (1988), 568 – 580.

A.J. Chamka, H.S. Takhar and V.M. Soundalgekar, Chem. Engg. J. 84 (2001), 335 – 342.

E.M. Ouaf Mahmoud, Applied Mathematics and Computation 170 (2005), 1117–1125.

S. Mukhopadhyay and G.C. Layek, Int. J. of Fluid Mechanics Research 34 (2007), p. 224.

E.M.A. Elbashbeshy, J. Phys. D: Appl. Phys. 31 (1998), p. 1951.

T. Hayat, Z. Abbas, I. Pop and S. Asghar, Int. J. Heat Mass Transfer 53 (2010), 466 – 474.

D. Pal and H. Mondal, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1197 – 1209.

S.K. Soid, S.A. Kechil, A.H.M. Shah, N.Z. Ismail and S.N.S. Ab. Halim, World Applied Sciences Journal 17 (Special Issue of Applied Math) (2012), 33 – 38.

S. Mukhopadhyay, K. Bhattacharyya and G.C. Layek, J. Petrol Sci. Eng. 78 (2011), 304 – 309.

S.P. A. Devi and A.D.M. Gururaj, Advances in Applied Science Research 3(1) (2012), 319 – 334.

A.D.M. Gururaj and C. Pavithra, Advances in Applied Science Research 4(2) (2013), 77 – 92.

A.D.M. Gururaj and S.P.A. Devi, International Journal of Applied Engineering Research 10(3) (2015), 8073 – 8090.

A.D.M. Gururaj and S.P.A. Devi, International Journal of Applied Engineering Research 10(44) (2015), 27144 – 27152.

A.D.M. Gururaj and T. Haseena, Journal of Nanofluids 4(3) (2015), 1 – 9.

M.E. Pantokratoras, International Communications in Heat and Mass Transfer 38(5) (2011), p. 554556.




DOI: http://dx.doi.org/10.26713%2Fjims.v9i3.1019

eISSN 0975-5748; pISSN 0974-875X