### Radio Geometric Mean Labeling of Some Star Like Graphs

#### Abstract

A radio Geometric Mean Labeling of a connected graph \(G\) is a one to one map \(f\) from the vertex set \(V(G)\) to the set of natural numbers \(N\) such that for two distinct vertices \(u\) and \(v\) of \(G\), \(d\left(u,v\right)+\left\lceil \sqrt{f(u)f(v)} \right\rceil \ge 1+\mathrm{diam}(G)\). The radio geometric mean number of \(f,\, r_{gmn} (f)\) is the maximum number assigned to any vertex of \(G\). The radio geometric mean number of \(G\), \(r_{gmn} (G)\) is the minimum value of \(r_{gmn} (f)\) taken over all radio geometric mean labeling \(f\) of \(G\). In this paper, we find the radio geometric mean number of some star like graphs.

#### Keywords

#### Full Text:

PDF#### References

G. Chartrand, D. Erwin, P. Zhang and F. Harary, Radio labeling of graphs, Bull. Inst. Combin. Appl. 33 (2001), 77 – 85.

R. Kchikech, M. Khennoufa and O. Togni, Linear and cyclic radio k-labelings of trees, Discuss. Math. Graph Theory 130(3) (2007), 105 – 123.

R. Kchikech, M. Khennoufa and O. Togni, Radio k-labelings for Cartesian products of graphs, Discuss. Math. Graph Theory 28(1) (2008), 165 – 178.

M. Khennoufa and O. Togni, The radio antipodal and radio numbers of the hypercube, Ars Combin. 102 (2011), 447 – 461.

D. Liu, Radio number for trees, Discrete Math. 308(7) (2008), 1153 – 1164.

D. Liu and X. Zhu, Multilevel distance labeling for paths and cycles, SIAM J. Discrete Math. 19(3) (2005), 610 – 621.

D. Liu and M. Xie, Radio number for square of cycles, Congr. Numer. 169 (2004), 105 – 125.

D. Liu and M. Xie, Radio number for square of paths, Ars Combin. 90 (2009), 307 – 319.

D. Liu and R.K. Yeh, On distance two labeling of graphs, Ars Combin. 47 (1997), 13 – 22.

R. Ponraj, S. Sathish Narayanan and R. Kala, Radio mean labeling of a graph, AKCE International Journal of Graphs and Combinatorics 12 (2015), 224 – 228.

R. Ponraj, S. Sathish Narayanan and R. Kala, On radio mean number of graphs, International J. Math. Combin. 3 (2014), 41 – 48.

F. Harary, Graph Theory, Addison Wesley, New Delhi (1969).

J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19 (2012), #DS6.

DOI: http://dx.doi.org/10.26713%2Fjims.v9i3.1017

eISSN 0975-5748; pISSN 0974-875X