### SO\((3,\mathbb{C})\) Representation and Action on a Homogeneous Space in \(\mathbb{C}^3\)

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

A. Aste, Complex representation theory of the electromagnetic field, J. Geom. Symmetry Phys. 28 (2012), 47 – 58.

E.A.B. Cole, Particle decay in six-dimensional relativity, J. Phys A: Math. Gen. 13 (1980), 109 – 1815.

D.H. Delphenich, A more direct representation for complex relativity, Ann. Phys. 16(9) (2007), 615 – 639.

F.R. Gantmacher, Application of the Theory of Matrices, Interscience Publishers, New York, (1959), translated by J.L. Brenner, Chapter 1, p. 2, p. 4.

T. Matolsci and A. Goher, Spacetime without reference frames: An application to the velocity addition paradox, Stud. Hist. Phil. Mod. Phys. 32(1) (2001), 83 – 99.

Z. Oziewicz, The Lorentz boost-link is not unique, Relative velocity as a morphism in a connected groupoid category of null objects, 5th Int. Workshop App. Category Theory, Graph-Operad-Logic, UADY, CINVESTAV, Merida, 15–19 May 2006, (2006), http://arxiv.org/abs/math-ph/0608062.

K.N.S. Rao, The Rotation and Lorentz Groups and Their Representations for Physics, Chapter 6.10, p. 281, John Wiley & Sons, New York, (1989).

K. Trencevski, On the geometry of the space-time and motion of the spinning bodies, Cent. Eur. J. Phys. 11(3) (2013), 296 – 316.

A.P. Yefremov, Physical theories in hypercomplex geometric description, Int. J. Geom. Methods Mod. Phys. 11(6) (2014), 1450062.

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905