### Generalized Subdivision Surface Scheme Based on 2D Lagrange Interpolating Polynomial and its Error Estimation

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

E. Catmull and J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, Computer Aided Design 10(6) (1978), 350 – 355, DOI: 10.1016/0010-4485(78)90110-0.

D. Doo and M.A. Sabin, Behaviour of recursive subdivision surfaces near extraordinary points, Computer Aided Design 10(6) (1978), 356 – 360, DOI: 10.1016/0010-4485(78)90111-2.

N. Dyn, D. Levin and J. Gregory, A 4-point interpolatory subdivision scheme for curve design, Computer Aided Geometric Design 4(4) (1987), 257 – 268.

A. Weissman, A 6-point Interpolatory Subdivision Scheme for Curve Design, M.Sc. Thesis, Tel Aviv University (1990).

L. Kobbelt, Interpolatory subdivision on open quadrilateral nets with arbitrary topology, Computer Graphics Forum 15(3) (1996), 409 – 420, DOI: 10.1111/1467-8659.1530409.

M.F. Hassan, Ivrissimitzis, N. Dogson and M.A. Sabin, An interpolating 4-point C2 ternary stationary subdivision scheme, Compt. Aided Grom. Design 19 (2002), 1 – 18.

M.K. Jena, P. Shunmugaraj and P.C. Das, A non-stationary subdivision scheme for curve interpolation, ANZIAM Journal 44 (2003), 216 – 235.

S.W. Choi, B.G. Lee, Y.J. Lee and J. Yoon, Stationary subdivision schemes reproducing polynomials, Computer Aided Geometric Design 23 (2006), 351 – 360, DOI: 10.1016/j.cagd.

C. Beccari, G. Casciola and L. Romani, An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control, Computer Aided Geometric Design 24(4) (2007), 210 – 219, DOI: 10.1016/j.cagd.

C. Beccari, G. Casciola and L. Romani, A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics, Computer Aided Geometric Design 24 (2007), 1 – 9, DOI: 10.1016/j.cagd.

K.P. Ko, A study on subdivision scheme-draft, Dongseo University Busan South Korea, http: //kowon.dongseo.ac.kr/~kpko/publication/2004book.pdf (2007).

L. Romani, From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms, Journal of Computational and Applied Mathematics, 224(1) (2009), 383 – 396, DOI: 10.1016/j.cam.05.013.

G. Dahlquist and A. Bjork, Numerical methods in scientific computing, Society for Industrial and Applied Mathematics 1 (2008), 397, DOI: 10.1137/1.9780898717785.

J.A. Lian, On a-ary subdivision for curve design - II: 3-point and 5-point interpolatory schemes, Applications and Applied Mathematics 3(2) (2008), 176 – 187.

J.A. Lian, On a-ary subdivision for curve design: 4-point and 6-point inerpolatory schemes, Appl. Math. Int. J. 3(1) (2008), 18 – 29.

J.A. Lian, On a-ary subdivision for curve design - III: 2m-point and (2m + 1)-point interpolatory schemes, Applications and Applied Mathematics 4(2) (2009), 434 – 444.

G. Mustafa and A.R. Najma, The mask of (2b + 4)-point n-ary subdivision scheme, Computing 90 (2010), 1 – 14, DOI: 10.1007/s00607-010-0108-x.

DOI: http://dx.doi.org/10.26713%2Fcma.v9i3.834

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905