### The Application of Quartic Trigonometric B-spline for Solving Second Order Singular Boundary Value Problems

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

M. Abbas, A.A. Majid, A.I.M. Ismail and A. Rashid, Numerical method using cubic B-spline for a strongly coupled reaction-diffusion system, PLoS ONE 9 (1) (2014), e83265, DOI: 10.1371/journal.pone.0083265.

M. Abbas, A.A. Majid, A.I.M. Ismail and A. Rashid, Numerical method using cubic trigonometric B-spline technique for non-classical diffusion problem, Abstract and Applied Analysis 2014 (2014), Article ID 849682, 10 pages, DOI: 10.1155/2014/849682.

M. Abbas, A.A. Majid, A.I.M. Ismail and A. Rashid, The application of cubic trigonometric B-spline to the numerical solution of the hyperbolic problems, Applied Mathematics and Computation 239 (2014), 74 – 88, DOI: 10.1016/j.amc.2014.04.031.

N.N. Abd. Hamid, Splines for Linear Two-Point Boundary Value Problems, Master’s Thesis, Universiti Sains Malaysia (2010).

E.L. Albasiny and W.D. Hoskins, Cubic spline solutions to two-point boundary value problems, The Computer Journal 12 (2) (1969), 151 – 153, DOI: 10.1093/comjnl/12.2.151.

W.G. Bickley, Piecewise cubic interpolation and two-point boundary problems, The Computer Journal 11 (2) (1968), 206 – 208, DOI: 10.1093/comjnl/11.2.206.

N. Caglar and H. Caglar, B-spline solution of singular boundary value problems, Applied Mathematics and Computation 182 (2) (2006), 1509 – 1513, DOI: 10.1016/j.amc.2006.05.035.

H. Caglar, N. Caglar and M. Ozer, B-spline solution of non-linear singular boundary value problems arising in physiology, Chaos Solitons and Fractals 39 (3) (2009), 1232 – 1237, DOI: 10.1016/j.chaos.2007.06.007.

D.J. Fyfe, The use of cubic splines in the solution of two-point boundary value problems, The Computer Journal 12 (2) (1969), 188 – 192, DOI: 10.1093/camjnl/12.2.188.

J. Goh, A.A. Majid and A.I.M. Ismail, A quartic B-spline for second-order singular boundary value problems, Computers and Mathematics with Applications 64 (2012), 115 – 120, DOI: 10.106/j.camwa.2012.01.022.

Y. Gupta and M. Kumar, A computer based numerical method for singular boundary value problems, International Journal of Computer Applications 30 (1) (2011), 21 – 25.

N. Hamid, A.A. Majid and A.I.M. Ismail, Cubic trigonometric B-spline applied to linear two-point boundary value problems of order two, World Academy of Science, Engineering and Technology 70 (2010), 798 – 803.

A.S. Heilat, N.N.A. Hamid and A.I. Ismail, Extended cubic B-spline method for solving a linear system of second-order boundary value problems, SpringerPlus 5 (2016), 1314, DOI: 10.1186/340064-016-2936-4.

M.K. Kadalbajoo and V.K. Aggarwal, Numerical solution of singular boundary value problems via Chebyshev polynomial and B-spline, Applied Mathematics and Computation 160 (2005), 851 – 863, DOI: 1016/j.amc.2003.12.2004.

M.K. Kadalbajoo and V. Kumar, B-spline method for a class of singular two-point boundary value problems using optimal grid, Applied Mathematics and Computation 188 (2) (2007), 1856 – 1869, DOI: 10.1016/j.amc.2006.11.050.

P. Koch, T. Lyche, M. Neamtu and L. Schumaker, Control curves and knot insertion for trigonometric splines, Advances in Computational Mathematics 3 (1995), 405 – 424.

M. Kumar and N. Singh, A collection of computational techniques for solving singular boundary value problems, Advances in Engineering Software 40 (2009), 288 – 297, DOI: 10.1016/j.advengsoft.2008.04.010.

M. Kumar, A difference method for singular two-point boundary value problems, Applied Mathematics and Computation 146 (2-3) (2003), 879 – 884, DOI: 10.1016/S0096-3003(02)00646-X.

S. Liu, Modified hierarchy basis for solving singular boundary value problems, Journal of Mathematical Analysis and Application 325 (2007), 1240 – 1256, DOI: 10.1016/j.jmma.2006.02.043.

A.S.V. Ravi Kanth and Y.N. Reddy, Cubic spline for a class of singular two-point boundary value problems, Applied Mathematics and Computation 170 (2)(2005), 733 – 740, DOI: 10.10.16/j.amc.2004.12.049.

A.S.V. Ravi Kanth and Y.N. Reddy, Higher order finite difference method for a class of singular boundary value problems, Applied Mathematics and Computation 155 (1) (2004), 249 – 258, DOI: 10.1016/S0096-3003(03)00774-4.

I.J. Schoenberg, On trigonometric spline interpolation, J.Math. Mech. 13 (1964), 795 – 825.

L.F. Shampine, Singular boundary value problems for ordinary differential equations, Applied Mathematics and Computation 138 (1) (2003), 99 – 112, DOI: 10.1016/S0096-3003(02)00111-X.

M.N. Suardi, N.Z.F.M. Radzuan and J. Sulaiman, Cubic B-spline solution for two-point boundary value problem with AOR iterative method, Journal of Physics: Conf. Series 890 (2017), 012015, DOI: 10.1088/1742-6596/890/1/012015.

G. Walz, Identities for trigonometric B-splines with an application to curve design, BIT Numerical Mathematics 37 (1997), 189 – 201, DOI: 10.1007/BF02510180.

S.M. Zin, A.A. Majid, A.I. Md. Ismail and M. Abbas, Application of hybrid cubic B-spline collocation approach for solving a generalized nonlinear Klien-Gordon equation, Mathematical Problems in Engineering 2014 (2014), Article ID 108560, 10 pages, DOI: 10.1155/2014/108560.

S.M. Zin, M. Abbas, A.A. Majid and A.I.M. Ismail, A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation, PLOS ONE 9 (5) (2014), e95774, DOI: 10.1371/journal.pone.0095774.

DOI: http://dx.doi.org/10.26713%2Fcma.v9i3.832

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905