Nonlinear Parabolic Operators with Perturbed Coefficients

Lutz Recke, Lubomira Softova


We consider the Cauchy-Dirichlet problem for second order quasilinear non-divergence form parabolic equations  with discontinuous data in a bounded cylinder \(Q\). Supposing  existence of strong solution \(u_0\) and applying the Implicit Function Theorem we show that for any  small \(L^\infty\)-perturbation of the coefficients there exists, locally in time, exactly one solution \(u\) close to $u_0$ with respect to the norm in \(W^{2,1}_p(Q)\) which depends smoothly on the data. For that, no structure and growth conditions on the data are needed. Moreover, applying the  Newton Iteration Procedure we obtain an approximating sequence for the solution \(u_0\).


Nonlinear parabolic equations; Cauchy-Dirichlet problem; VMO; Implicit Function Theorem; Newton Iteration Procedure

Full Text:



P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura. Appl. 161 (1992), 231 – 270, DOI: 10.1007BF01759640.

M. Bramanti and M.C. Cerutti, W1,2 p solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Diff. Eq. 18 (1993), 1735 – 1763, DOI: 10.1080/0360530930882991.

D. Cassani, L. Fattorusso and A. Tarsia, Global existence for nonlocal MEMS, Nonl. Anal., Theory Meth. Appl., Ser. A. 74 (16) (2011), 5722 – 5726, DOI: 10.1007/

J.A. Griepentrog and L. Recke, Local existence, uniqueness and smooth dependence for nonsmooth quasilinear parabolic problems, J. Evol. Eq. 10 (2010), 341 – 375, DOI: 10.1007/s00028-010-0052-4.

K. Gröger and L. Recke, Applications of differential calculus tu quasilinear elliptic boundary value problems with non-smooth data, Nonl. Differ. Equ. Appl. 13 (3) (2006), 263 – 285, DOI: 10.1007/s00030-006-3017-0.

F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415 – 426, DOI: 10.1002/cpa.3160140317.

P.W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41 – 66.

O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, R.I. (1968).

O.A. Ladyzhenskaya and N.N. Ural’tseva, A survey of results on the solubility of boundary-value problems for second-order uniformly elliptic and parabolic quasi-linear equations having unbounded singularities, Russ. Math. Surv. 41 (5) (1986), 1 – 31, DOI: 10.1070/RM1986v041n05ABEH003415.

A. Maugeri, D.K. Palagachev and L.G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Math. Res. 109, Wiley-VCH, Berlin (2000), DOI: 10.1002/3527600868.

D.K. Palagachev, L. Recke and L.G. Softova, Applications of the differential calculus to nonlinear elliptic operators with discontinuous coefficients, Math. Ann. 336 (2006), 617 – 637, DOI: 10.1007/s00208-006-0014-X.

L. Recke, Applications of the implicit function theorem to quasilinear elliptic boundary value problem with non-smooth data, Comm. Part. Diff. Eq. 20 (1995), 1457 – 1479, DOI: 10.1080/03605309508821140.

L. Recke and L.G. Softova, Application of the differential calculus to nonlinear parabolic operators, C. R. Acad. Bulg. Sci. 66 (2) (2013), 185 – 192, DOI: 10.7546/CR-2013-66-2-13101331-4.

D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391 – 405, DOI: 10.2307/1997184.

L.G. Softova, Quasilinear parabolic operators with discontinuous ingredients, Nonl. Anal., Theory Meth. Appl., Ser. A. 52 (2003), 1079 – 1093, DOI: 10.1016/s0362-546X(02)00128-1.

L.G. Softova, Strong solvability for a class of nonlinear parabolic equations, Le Matematiche, LII (1) (1997), 59 – 70, ISSN: 0373-3505.

L.G. Softova, An integral estimate for the gradient for a class of nonlinear elliptic equations in the plane, Z. Anal. Anwend. 17 (1) (1998), 57 – 66, DOI: 10.4171/ZAA/808.

A. Tarsia, Differential equations and implicit function: a generalization of the near operators theorem, Topol. Meth. Nonl. Anal. 11 (1998), 115 – 133, DOI: 10.12775/TMNA.1998.007.

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I: Fixed Points Theorems, Springer, Berlin — Heidelberg — New York (1993).



  • There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905