### Some Results of the Normal Intersection Graph of a Group

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

H. Ahmadi and B. Taeri, Planarity of the intersection graph of subgroups of a finite group, J. Algebra Appl. 15 (2016), 1650040, 19 p.

S. Akbari, H.A. Tavallaee and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 (2012), 1250019, 8 p.

J. Bosak, The graphs of semi-groups, in Theory of Graphs and Its Applications, Proc. Sympos, Smolenice (1963), Publ. House Czechoslovak Acad. Sci., Praha (1964).

W. Burnside, Theory of groups of finite order, 2nd edition, Dover Publications, Inc., New York (1955), xxiv + 512 p.

I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of ring, Discrete Math. 309 (2009), 5381 – 5392.

G. Chartrand and L. Lesniak, Graphs & Digraphs, 3rd edition, Chapman & Hall, London (1996).

B. Csákány and G. Pollák, The graph of subgroups of a finite group (Russian), Czechoslovak Math. J. 19 (94) (1969), 241 – 247.

R. Rajkumar and P. Devi, Planarity of permutability graphs of subgroups of groups, J. Algebra Appl. 13 (2014) 1350112, 15 p.

D.J.S. Robinson, A Course in the Theory of Groups, 2nd edition, Springer-Verlag, New York (1995).

J.J. Rotman, An Introduction to the Theory of Groups, 4th edition, Springer-Verlag, New York (1995).

R. Schmidt, Planar subgroup lattices, Algebra Universalis 55 (2006), 3 – 12.

R. Shen, Intersection graphs of subgroups of finite groups, Czechoslovak Math. J. 60 (2010), 945 – 950.

DOI: http://dx.doi.org/10.26713%2Fcma.v9i2.645

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905