A Examining Fuzzy Partial Metric Space and Associated Outcomes

Authors

DOI:

https://doi.org/10.26713/cma.v16i2.3086

Keywords:

Fixed point theorem, Fuzzy sets, Fuzzy metric space, Partial metric space

Abstract

Using the concept of a PM space with fuzzy, it gives idea of a FPMS in this paper. A point’s self-distance in partial metric space does not always equal to zero. Ordinary metric is a subset of partial metric. Additionally, also define continuous t-norms. Partial fuzzy contraction mapping is defined here. It also demonstrates that, in certain circumstances, the complete partial metric space has a common fixed point through use of contraction mapping. Relevant examples are used as provide results.

Downloads

Download data is not yet available.

References

B. Aldemir, E. Güner, E. Aydo˘gdu and H. Aygün, Some fixed point theorems in partial fuzzy metric spaces, Journal of the Institute of Science and Technology 10(4) (2020), 2889 – 2900, DOI: 10.21597/jist.716207.

I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topology and its Applications 157(18) (2010), 2778 – 2785, DOI: 10.1016/j.topol.2010.08.017.

F. J. Amer, Fuzzy partial metric spaces, in: Computational Analysis, G. Anastassiou and O. Duman (editors), Springer Proceedings in Mathematics & Statistics series, Vol. 155, Springer, Cham, pp. 153 – 161 (2016), DOI: 10.1007/978-3-319-28443-9_11.

F. J. Amer, Product of fuzzy partial metric space, Journal of Educational 17 (2020), 279 – 286.

H. Aygün, E. Güner, J.-J. Miñana and O. Valero, Fuzzy partial metric spaces and fixed point theorems, Mathematics 10(17) (2022), 3092, DOI: 10.3390/math10173092.

I. Beg, S. Sedghi and N. Shobe, Fixed point theorems in fuzzy metric spaces, International Journal of Analysis 2013(1) (2013), 934145, DOI: 10.1155/2013/934145.

M. Bukatin, R. Kopperman, S. Matthews and H. Pajoohesh, Partial metric space, The American Mathematical Monthly 116(8) (2009), 708 – 718, DOI: 10.4169/193009709X460831.

E. Güner and H. Aygün, A new approach to fuzzy partial metric spaces, Hacettepe Journal of Mathematics and Statistics 51(6) (2022), 1563 – 1576, DOI: 10.15672/hujms.1115381.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64(3) (1994), 395 – 399, DOI: 10.1016/0165-0114(94)90162-7.

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27(3) (1988), 385 – 389, DOI: 10.1016/0165-0114(88)90064-4.

V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125(2) (2002), 245 – 252, DOI: 10.1016/S0165-0114(00)00088-9.

V. Gregori, J. J. Miñana and D. Miravet, Fuzzy partial metric spaces, International Journal of General Systems 48(3) (2019), 260 – 279, DOI: 10.1080/03081079.2018.1552687.

V. Gregori, S. Morillas and A. Sapena, On a class of completable fuzzy metric spaces, Fuzzy Sets and Systems 161(16) (2010), 2193 – 2205, DOI: 10.1016/j.fss.2010.03.013.

R. H. Haghi, S. Rezapour and N. Shahzad, Be careful on partial metric fixed point results, Topology and its Applications 160(3) (2013), 450 – 454, DOI: 10.1016/j.topol.2012.11.004.

S. Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728(1) (1994), 183 – 197, DOI: 10.1111/j.1749-6632.1994.tb44144.x.

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis 7(2) (2006), 289 – 297, URL: http://yokohamapublishers.jp/online2/opjnca/vol7/p289.html.

S. J. O’Neill, Partial metrics, valuations and domain theory, Annals of the New York Academy of Sciences 806(1) (1996), 304 – 315, DOI: 10.1111/j.1749-6632.1996.tb49177.x.

S. Sedghi, N. Shobkolaei and I. Altun, Partial fuzzy metric space and some fixed point results, Communications in Mathematics 23(2) (2015), 131 – 142, URL: https://eudml.org/doc/276174.

R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems 135(1) (2003), 415 – 417, DOI: 10.1016/S0165-0114(02)00132-X.

Z.-Q. Xia and F.-F. Guo, Fuzzy metric Spaces, Journal of Applied Mathematics and Computing 16(1-2) (2004), 371 – 381, DOI: 10.1007/BF02936175.

Y. Yue and M. Gu, Fuzzy partial (pseudo) metric spaces, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology 27(3) (2014), 1153 – 1159, DOI: 10.3233/IFS-131.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

20-08-2025
CITATION

How to Cite

Pathak, R. P., & Gore, R. R. (2025). A Examining Fuzzy Partial Metric Space and Associated Outcomes. Communications in Mathematics and Applications, 16(2), 525–533. https://doi.org/10.26713/cma.v16i2.3086

Issue

Section

Research Article