An Analytical Approach for a Deterministic Epidemiological Model – Monkeypox Clinical Disease
DOI:
https://doi.org/10.26713/cma.v16i2.3052Keywords:
Stability analysis, Monkeypox, Epidemic model, Nonlinear differential equations, Mathematical models, q-Homotopy analysis transform methodAbstract
In this study, we investigate a non-linear differential equation modeling the transmission dynamics of monkeypox. We begin with a thorough stability analysis to assess the equilibrium points of the model, providing insights into the conditions under which the disease may persist or diminish within a population. Following this, we employ the q-Homotopy Analysis Transform Method (q-HATM) to derive analytical solutions, showing its effectiveness in handling the complexities inherent in non-linear systems. Our findings reveal that while both methods yields valuable insights into the behavior of the monkeypox transmission model, q-HATM offers greater flexibility in terms of initial conditions and non-linearity. This work contributes to the understanding of monkeypox for future research in disease modeling using advanced mathematical techniques.
Downloads
References
M. Abdullah, A. Ahmad, N. Raza, M. Farman and M. O. Ahmad, Approximate solution and analysis of smoking epidemicmodel with Caputo fractional derivatives, International Journal of Applied and Computational Mathematics 4 (2018), article number 112, DOI: 10.1007/s40819-018-0543-5.
E. Alkunle, U. Moens, G. Nehinda and M. Okeke, Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution, Viruses 12(11) (2020), 1257, DOI: 10.3390/v12111257.
E. Alzahrani and A. Zeb, Stability analysis and prevention strategies of tobacco smoking model, Boundary Value Problems 2020 (2020), Article number: 3, DOI: 10.1186/s13661-019-01315-1.
A. Atangana and J. F. Gómez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Physica A: Statistical Mechanics and its Applications 476 (2017), 1 – 14, DOI: 10.1016/j.physa.2017.02.016.
A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos, Solitons & Fractals 102 (2017), 285 – 294, DOI: 10.1016/j.chaos.2017.03.022.
C. P. Bhunu and S. Mushayabasa, Modelling the transmission dynamics of pox-like infections, IAENG International Journal of Applied Mathematics 41(2) (2011), 9 pages, URL: https://www.iaeng.org/IJAM/issues_v41/issue_2/IJAM_41_2_09.pdf.
G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore and J. M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, Journal of Theoretical Biology 229(1) (2004), 119 – 126, DOI: 10.1016/j.jtbi.2004.03.006.
G. Hobson, J. Adamson, H. Adler, R. Firth, S. Gould, C. Houlihan, C. Johnson, D. Porter, T. Rampling, L. Ratcliffe, K. Russell, A. G. Shankar and T. Wingfield, Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdom, May 2021, Eurosurveillance 26(32) (2021), 2100745, DOI: 10.2807/1560-7917.ES.2021.26.32.2100745.
H.-F. Huo, R. Chen and X.-Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Applied Mathematical Modelling 40(13-14) (2016), 6550 – 6559, DOI: 10.1016/j.apm.2016.01.054.
R. F. Johnson, S. Yellayi, J. A. Cann, A. Johnson, A. L. Smith, J. Paragas, P. B. Jahrling and J. E. Blaney, Cowpox virus infection of cynomolgus macaques as a model of hemorrhagic smallpox, Virology 418(2) (2011), 102 – 102, DOI: 10.1016/j.virol.2011.07.013.
K. M. Owolabi and A. Atangana, Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative, Chaos, Solitons & Fractals 126 (2019), 41 – 49, DOI: 10.1016/j.chaos.2019.06.001.
V. Padmavathi, N. Magesh, K. Alagesan, M. I. Khan, S. Elattar, M. Alwetaishi and A. M. Galal, Numerical modeling and symmetry analysis of a pine wilt disease Model using the Mittag-Leffler kernel, Symmetry 14(5) (2022), 1067, DOI: 10.3390/sym14051067.
V. Padmavathi, A. Prakash, K. Alagesan and N. Magesh, Analysis and numerical simulation of novel coronavirus (COVID-19) model with Mittag-Leffler Kernel, Mathematical Methods in the Applied Sciences 44(2) (2021), 1863 – 1877, DOI: 10.1002/mma.6886.
S. Pathak, A. Maiti and G. P. P. Samanta, Rich dynamics of an SIR epidemic model, Nonlinear Analysis: Modelling and Control, 15(1) (2010), 71 – 81, DOI: 10.15388/NA.2010.15.1.14365.
A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos Solitons & Fractals 105 (2017), 99 – 110, DOI: 10.1016/j.chaos.2017.10.003.
A. Prakash and H. Kaur, Analysis and numerical simulation of fractional order Cahn-Allen model with Atangana-Baleanu derivative, Chaos, Solitons & Fractals 124 (2019), 134 – 142, DOI: 10.1016/j.chaos.2019.05.005.
A. Prakash, M. Goyal, H. M. Baskonus and S. Gupta, A reliable hybrid numerical method for a time dependent vibration model of arbitrary order, AIMS Mathematics 5(2) (2020), 979 – 1000, DOI: 10.3934/math.2020068.
M. G. Reynolds, J. B. Doty, A. M. Mccollum, V. A. Olson and Y. Nakazawa, Monkeypox re-emergence in Africa: A call to expand the concept and practice of one health, Expert Review of Anti-infective Therapy 17(2) (2019), 129 – 139, DOI: 10.1080/14787210.2019.1567330.
J. Singh, D. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Mathematical Modelling of Natural Phenomena 14(3) (2019), Article number 303, 23 pages, DOI: 10.1051/mmnp/2018068.
S. A. Somma, N. I. Akinwande and U. D. Chado, A mathematical model of monkeypox virus transmission dynamics, Ife Journal of Science 21(1) (2019), 195 – 204, DOI: 10.4314/ijs.v21i1.17.
J. P. Thornhill, S. Barkati, S. Walmsley, J. Rockstroh, A. Antinori, L. B. Harrison, R. Palich, A. Nori, I. Reeves, M. S. Habibi, V. Apea, C. Boesecke, L. Vandekerckhove, M. Yakubovsky, E. Sendagorta, J. L. Blanco, E. Florence, D. Moschese, F. M. Maltez, A. Goorhuis, V. Pourcher, P. Migaud, S. Noe, C. Pintado, F. Maggi, A.-B. E. Hansen, C. Hoffmann, J. I. Lezama, C. Mussini, A. M. Cattelan, K. Makofane, D. Tan, S. Nozza, J. Nemeth, M. B. Klein and C. M. Orkin, Monkeypox Virus Infection in Humans across 16 Countries — April-June 2022, New England Journal of Medicine 387(8) (2022), 679 – 691, DOI: 10.1056/NEJMoa2207323.
P. Veeresha, D. G. Prakasha and H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Mathematical Sciences 13(2) (2019), 115 – 128, DOI: 10.1007/s40096-019-0284-6.
P. Veeresha, D. G. Prakasha, N. Magesh, A. J. Christopher and D. U. Sarwe, Solution for fractional potential KdV and Benjamin equations using the novel technique, Journal of Ocean Engineering and Science 6(3) (2021), 265 – 275, DOI: 10.1016/j.joes.2021.01.003.
R. Vivancos, C. Anderson, P. Blomquist, S. Balasegaram, A. Bell, L. Bishop, C. S. Brown, Y. Chow, O. Edeghere, I. Florence, S. Logan, P. Manley, W. Crowe, A. McAuley, A. G. Shankar, B. Mora-Peris, K. Paranthaman, M. Prochazka, C. Ryan, D. Simons, R. Vipond, C. Byers, N. A. Watkins, UKHSA Monkeypox Incident Management Team10, W. Welfare, E. Whittaker, C. Dewsnap, A. Wilson, Y. Young, M. Chand, S. Riley and S. Hopkins, Community transmission of monkeypox in the United Kingdom, April to May 2022, Eurosurveillance 22 (27) (2022), 5 pages, URL: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.22.2200422.
H. M. Youssef, N. Alahamdi, M. A. Ezzat, A. A. Elbary and A. M. Shawky, A proposed modified SEIQR epidemic model to analyze the COVID-19 spreading in Saudi Arabia, Alexandria Engineering Journal 61(3) (2022), 2456 – 2470, DOI: 10.1016/j.aej.2021.06.095.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



