Fermatean Picture Fuzzy Continuity in Fermatean Picture Fuzzy Topological Spaces

Authors

  • V. Chitra Department of Mathematics, Nallamuthu Gounder Mahalingam College (affiliated with Bharathiar University), Pollachi 642001, Tamil Nadu, India https://orcid.org/0000-0002-9217-2816
  • B. Maheswari Department of Mathematics, Dr. Mahalingam College of Engineering and Technology (affiliated with Anna University), Pollachi 642003, Tamil Nadu, India https://orcid.org/0009-0007-7984-4730
  • S. Jafari College of Vestsjaelland South & Mathematical and Physical Science Foundation, 4200 Slagelse, Denmark https://orcid.org/0000-0001-5744-7354

DOI:

https://doi.org/10.26713/cma.v16i2.3039

Keywords:

Fermatean picture fuzzy set, Fermatean picture fuzzy topological spaces, Fermatean picture fuzzy continuous mapping, FPF-β connectedness

Abstract

The purpose of this paper is to define a new Picture fuzzy continuous mapping in Fermatean picture fuzzy topological spaces and investigate its fundamental properties. In addition, we explore a key topological concept FPF-\(\beta\) connectedness within the framework of Fermatean picture fuzzy topology.

Downloads

Download data is not yet available.

References

K. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31(3) (1989), 343 – 349, DOI: 10.1016/0165-0114(89)90205-4.

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

K. Atanassov, Intuitionistic fuzzy sets, in: Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing series, Vol. 35, Physica, Heidelberg, DOI: 10.1007/978-3-7908-1870-3_1.

S. Broumi and F. Smarandache, Correlation coefficient of interval neutrosophic set, Applied Mechanics and Materials 436 (2013), pp. 511 – 517, DOI: 10.5281/zenodo.48908.

S. Broumi and F. Smarandache, Several similarity measures of neutrosophic sets, Neutrosophic Sets and Systems 1 (2013), 54 – 62, URL: https://philarchive.org/rec/BROSSM-3.

V. Chitra and B. Maheswari, Fermatean picture fuzzy sets, Advances in Nonlinear Variational Inequalities 28(1) (2024), 390 – 399, URL: https://internationalpubls.com/index.php/anvi/article/view/2441/1490.

B. C. Cuong and V. Kreinovich, Picture fuzzy sets - A new concept for computational intelligence problems, in: 2013 Third World Congress on Information and Communication Technologies (WICT 2013, Hanoi, Vietnam, 2013), pp. 1 – 6 (2013), DOI: 10.1109/WICT.2013.7113099.

B. C. Cuong, Picture fuzzy sets, Journal of Computer Science and Cybernetics 30(4) (2014), 409 – 420, DOI: 10.15625/1813-9663/30/4/5032.

B. C. Cuong, Pythagorean picture fuzzy sets, Part 1 - basic notions, Journal of Computer Science and Cybernetics 35(4) (2019), 293 – 304, DOI: 10.15625/1813-9663/35/4/13898.

H. Z. Ibrahim, Fermatean fuzzy topological spaces, Journal of Applied Mathematics & Informatics 40(1_2) (2022), 85 – 98, DOI: 10.14317/jami.2022.085.

H. Z. Ibrahim, T. M. Al-Shami and O. G. Elbarbary, (3,2)-Fuzzy sets and their applications to topology and optimal choices, Computational Intelligence and Neuroscience, 2021(1) (2021), 1272266, DOI: 10.1155/2021/1272266.

Y. B. Jun and K. J. Lee, Closed cubic ideals and cubic ◦-subalgebras in BCK/BCI algebras, Applied Mathematical Sciences 4(68) (2010), 3395 – 3402.

Y. B. Jun, F. Smarandache and C. S. Kim, Neutrosophic cubic sets, New Mathematics and Natural Computation 13(1) (2017), 41 – 44, DOI: 10.1142/S1793005717500041.

Y. B. Jun, K. J. Lee and M. S. Kang, Cubic structures applied to ideals of BCI-algebras, Computers & Mathematics with Applications 62(9) (2011), 3334 – 3342, DOI: 10.1016/j.camwa.2011.08.042.

X. Peng and Y. Yang, Some results for Pythagorean fuzzy sets, International Journal of Intelligent Systems 30 (2015), 1133 – 1160, DOI: 10.1002/int.21738.

H. Wang, F. Smarandache, Y.-Q. Zhang and R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, Hexis, vi + 87 pages (2005), DOI: 10.5281/zenodo.8818.

R. R. Yager, Pythagorean fuzzy subsets, in: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS, Edmonton, AB, Canada, 2013), pp. 57 – 61 (2013), DOI: 10.1109/IFSANAFIPS.2013.6608375.

Y. Yang and J. Li, Arithmetic aggregation operators on type-2 picture fuzzy sets and their application in decision making, Engineering Letters 31(4) (2023), EL_31_4_14, URL: https://www.engineeringletters.com/issues_v31/issue_4/EL_31_4_14.pdf.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

20-08-2025
CITATION

How to Cite

Chitra, V., Maheswari, B., & Jafari, S. (2025). Fermatean Picture Fuzzy Continuity in Fermatean Picture Fuzzy Topological Spaces. Communications in Mathematics and Applications, 16(2), 651–660. https://doi.org/10.26713/cma.v16i2.3039

Issue

Section

Research Article