Rough \(\Delta^m\)-Statistical Convergence of order \(\alpha\) of Generalized Difference Sequences in Intuitionistic Fuzzy Normed Spaces

Authors

  • Gursimran Kaur Department of Mathematics, Chandigarh University, Gharuan 140413, Punjab, India https://orcid.org/0000-0002-3919-4557
  • Meenakshi Chawla Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri 140307, Punjab, India https://orcid.org/0000-0003-1086-7452

DOI:

https://doi.org/10.26713/cma.v16i2.3006

Keywords:

Intuitionistic normed spaces, Statistical convergence, Rough statistical convergence, Difference sequence, Generalized difference sequence

Abstract

The prime direction of this research article is to explicate the perception of rough \(\Delta^m\)-statistical convergence of order \(\alpha\) of generalized difference sequences in intuitionistic fuzzy normed spaces. We showed certain rough convergence features, which give some new functional tools in the face of uncertainty, such as intuitionistic fuzzy normed spaces. We demonstrated some basic properties and examples which generates the results that this perception is more generic. Further, we added the set of \(\Delta^m\)-statistical limit points and set of \(\Delta^m\)-statistical cluster points and their relationship of rough \(\Delta^m\)-statistically convergence of generalized difference sequences in these spaces.

Downloads

Download data is not yet available.

References

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

S. Aytar, Rough statistical convergence, Numerical Functional Analysis and Optimization 29(3-4) (2008), 291 – 303, DOI: 10.1080/01630560802001064.

M. Chawla, M. S. Saroa and V. Kumar, On Λ-statistical convergence of order α in random 2-normed space, Miskolc Mathematical Notes 16(2) (2015), 1003 – 1015, DOI: 10.18514/MMN.2015.821.

M. Çınar and M. Et, Δm-statistical convergence of order α˜ for double sequences of functions, Facta Universitatis, Series: Mathematics and Informatics 35(2) (2020), 393 – 404, DOI: 10.22190/FUMI2002393C.

N. Demir and H. Gümü¸s, Rough convergence for difference sequences, New Trends in Mathematical Sciences 8(2) (2020), 22 – 28, DOI: 10.20852/ntmsci.2020.402.

M. Et and R. Colak, On some generalized difference sequence spaces, Soochow Journal of Mathematics 21 (1995), 377 – 386.

M. Et and F. Nuray, Δm-Statistical convergence, Indian Journal of Pure and Applied Mathematics 32(6) (2001), 961 – 969.

H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2(3-4) (1951), 241 – 244, https://eudml.org/doc/209960.

R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets and Systems 4(3) (1980), 221 – 234, DOI: 10.1016/0165-0114(80)90012-3.

S. Karakus and K. Demırcı, Statistical convergence of double sequences on probabilistic normed spaces, International Journal of Mathematics and Mathematical Sciences 2007(1), 014737, DOI: 10.1155/2007/14737.

S. Karakus, K. Demırcı and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons & Fractals 35(4) (2008), 763 – 769, DOI: 10.1016/j.chaos.2006.05.046.

H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.

F. A. Lootsma, Fuzzy Logic for Planning and Decision Making, 1st edition, Springer, New York, NY, x + 198 pages (1997), DOI: 10.1007/978-1-4757-2618-3.

M. Maity, A note on rough statistical convergence of order α, arXiv:1603.00183, 7 pages (2016), DOI: 10.48550/arXiv.1603.00183.

S. A. Mohiuddine and Q. M. D. Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, 42(3) (2009), 1731 – 1737, DOI: 10.1016/j.chaos.2009.03.086.

F. Móricz, Statistical convergence of multiple sequences, Archiv der Mathematik 81 (2003), 82 – 89, DOI: 10.1007/s00013-003-0506-9.

M. Mursaleen, On statistical convergence in random 2-normed spaces, Acta Scientiarum Mathematicarum 76 (2010), 101 – 109, DOI: 10.1007/BF03549823.

Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications 288(1) (2003), 223 – 231, DOI: 10.1016/j.jmaa.2003.08.004.

H. T. Nguyen and B.Wu, Fundamentals of Statistics with Fuzzy Data, Studies in Fuzziness and Soft Computing series, Springer, Berlin — Heidelberg, x + 196 pages (2006), DOI: 10.1007/11353492.

J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22(5) (2004), 1039 – 1046, DOI: 10.1016/j.chaos.2004.02.051.

H. X. Phu, Rough convergence in normed linear spaces, Numerical Functional Analysis and Optimization 22(1-2) (2001), 199 – 222, DOI: 10.1081/NFA-100103794.

H. M. Prade, Operations research with fuzzy data in fuzzy sets, in: Fuzzy Sets, P. P. Wang and S. K. Chang (editors), Springer, Boston, MA, DOI: 10.1007/978-1-4684-3848-2_14.

Reena, Meenakshi and T. Bansal, Statistical Λ-convergence of order α in intuitionistic fuzzy normed spaces, International Journal on Emerging Technologies 10(2b)(2019), 43 – 47.

Reena, Meenakshi and V. Kumar, Generalized statistical convergence of α in random n-normed space, Advances and Applications in Mathematical Sciences 18(9) (2019), 715 – 729.

T. J. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, Ltd., xxi + 585 pages (2010), DOI: 10.1002/9781119994374.

A. ¸ Sahiner, M. Gürdal and F. K. Düden, Triple sequences and their statistical convergences, Selçuk Journal of Applied Mathematics 8(2) (2007), 49 – 55.

T. Šalát, On statistically convergent sequences of real numbers, Mathematica Slovaca 30(2) (1980), 139 – 150, URL: https://eudml.org/doc/34081.

R. Saadati and J. H. Park, On the intuitionistic fuzzy topological space, Chaos, Solitons & Fractals 27(2) (2006), 331 – 344, DOI: 10.1016/j.chaos.2005.03.019.

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960) 313 – 334.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum 2 (1951), 73 – 74.

L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

A. Zygmund, On the convergence of lacunary trigonometric series, Fundamenta Mathematicae 16(1) (1930), 90 – 107, URL: http://eudml.org/doc/212510.

Downloads

Published

20-08-2025
CITATION

How to Cite

Kaur, G., & Chawla, M. (2025). Rough \(\Delta^m\)-Statistical Convergence of order \(\alpha\) of Generalized Difference Sequences in Intuitionistic Fuzzy Normed Spaces. Communications in Mathematics and Applications, 16(2), 405–418. https://doi.org/10.26713/cma.v16i2.3006

Issue

Section

Research Article