Some Properties of Pythagorean Fuzzy Normed Ideals

Authors

  • Manish Kumar Gunjan Department of Mathematics, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India https://orcid.org/0009-0009-0157-0279
  • Amal Kumar Adak Department of Mathematics, Ganesh Dutt College (affiliated to Lalit Narayan Mithila University), Begusarai 851101, Bihar, India https://orcid.org/0000-0002-3644-782X

DOI:

https://doi.org/10.26713/cma.v16i2.2992

Keywords:

Intuitionistic fuzzy set, Pythagorean fuzzy set, Pythagorean fuzzy normed ideal

Abstract

Pythagorean fuzzy sets are an advanced extension of fuzzy sets, building upon the framework of intuitionistic fuzzy sets and offering a more comprehensive solution to the limitations inherent in intuitionistic fuzzy theory. This study introduces the concept of Pythagorean Fuzzy Normed Ideals (PFNIs). It explores the intrinsic product between two PFNIs, presenting key results related to this operation. Additionally, the study introduces the concept of characteristic functions in the context of PFNIs and discusses several significant properties of these functions. Furthermore, important findings concerning the epimorphism of Pythagorean fuzzy normed ideals are also presented.

Downloads

Download data is not yet available.

References

A. K. Adak and D. Kumar, Some properties of Pythagorean fuzzy ideals of Γ-near-rings, Palestine Journal of Mathematics 11(2) (4) (2022), 336 – 346, URL: https://pjm.ppu.edu/sites/default/files/papers/PJM_December_2022_336_to_346..pdf.

A. K. Adak and D. D. Salokolaei, Some properties rough pythagorean fuzzy sets, Fuzzy Information and Engineering 13(4) (2021), 420 – 435, DOI: 10.1080/16168658.2021.1971143.

K. T. Atannassov, Interval valued intuitionistic fuzzy sets, in: Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing series, Vol. 35, pp. 139 – 177, Physica, Heidelberg (1999), DOI: 10.1007/978-3-7908-1870-3_2.

K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

N. A. Alhaleem and A. G. Ahmad, Intuitionistic fuzzy normed subrings and intuitionistic fuzzy normed ideals, Mathematics 8(9) (2020), 1594, DOI: 10.3390/math8091594.

N. A. Alhaleem and A. G. Ahmad, Intuitionistic anti fuzzy normed ideals, Notes on Intuitionistic Fuzzy Sets 27(1) (2021), 60 – 71, URL: https://ifigenia.org/images/2/2b/NIFS-27-1-60-71.pdf.

B. Banerjee and D. K. Basnet, Intuitionistic fuzzy subrings and ideals, The Journal of Fuzzy Mathematics 11 (2003), 139 – 155.

V. N. Dixit, R. Kumar and N. Ajmal, Fuzzy ideals and fuzzy prime ideals of a ring, Fuzzy Sets and Systems 44(1) (1991), 127 – 138, DOI: 10.1016/0165-0114(91)90038-R.

A. Emniyet and M. ¸ Sahin, Fuzzy normed rings, Symmetry 10(10) (2018), 515, DOI: 10.3390/sym10100515.

K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy ideals of a ring, Theoretical Mathematics and Pedagogical Mathematics 12(3) (2005), 193 – 209, URL: https://www.koreascience.or.kr/article/JAKO200507521979074.page.

K. H. Kim, J. G. Lee and S. M. Lee, Intuitionistic (T,S)-normed fuzzy ideals of ϖ-rings, International Mathematical Forum 3(3) (2008), 115 – 123.

T. K. Mukherjee and M. K. Sen, On fuzzy ideals of a ring I, Fuzzy Sets and Systems 21(1) (1987), 99 – 104, DOI: 10.1016/0165-0114(87)90155-2.

R. R. Yager, Pythagorean fuzzy subsets, in: Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Canada, 2013, pp. 57 – 61, IEEE, (2013), DOI: 10.1109/IFSA-NAFIPS.2013.6608375.

R. R. Yager and A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, International Journal of Intelligent Systems 28(5) (2013), 436 – 452, DOI: 10.1002/int.21584.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

20-08-2025
CITATION

How to Cite

Gunjan, M. K., & Adak, A. K. (2025). Some Properties of Pythagorean Fuzzy Normed Ideals. Communications in Mathematics and Applications, 16(2), 631–641. https://doi.org/10.26713/cma.v16i2.2992

Issue

Section

Research Article