Intuitionistic Fuzzy Binary Soft Topological Spaces

Authors

DOI:

https://doi.org/10.26713/cma.v16i2.2956

Keywords:

Intuitionistic fuzzy binary soft topological space, Intuitionistic fuzzy binary soft neighborhood, Intuitionistic fuzzy binary soft interior, Intuitionistic fuzzy binary soft closure

Abstract

In this article, intuitionistic fuzzy binary soft topological space over two initial universal sets and a parameter set is introduced. Further, intuitionistic fuzzy binary soft neighborhood, intuitionistic fuzzy binary soft interior, intuitionistic fuzzy binary soft closure in an intuitionistic fuzzy binary soft topological space is defined, and their properties are discussed.

Downloads

Download data is not yet available.

References

A. Açikgoz and N. Tas, Binary soft set theory, European Journal of Pure and Applied Mathematics 9(4) (2016), 452 – 463, URL: https://www.ejpam.com/index.php/ejpam/article/view/2148.

K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

S. S. Benchalli, P. G. Patil, A. S. Dodamani and J. Pradeepkumar, On binary soft topological spaces, International Journal of Applied Mathematics 30(6) (2017), 437 – 453, DOI: 10.12732/ijam.v30i6.1.

C. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications 24(1) (1968), 182 – 190, DOI: 10.1016/0022-247X(68)90057-7.

D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1) (1997), 81 – 89, DOI: 10.1016/S0165-0114(96)00076-0.

Z. Li and R. Cui, On the topological structure of intuitionistic fuzzy soft sets, Annals of Fuzzy Mathematics and Informatics 5(1) (2013), 229 – 239, URL: http://www.afmi.or.kr/papers/2013/Vol-05_No-01/PDF/AFMI-5-1(229-239)-J-120530.pdf.

P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computers & Mathematics with Applications 45(4-5) (2003), 555 – 562, DOI: 10.1016/S0898-1221(03)00016-6.

P. G. Metlida and J. Subhashini, An application of fuzzy binary soft set in decision making problems, Webology 18(6) (2021), 3672 – 3680.

D. Molodtsov, Soft set theory – First results, Computers & Mathematics with Applications 37(4-5) (1999), 19 – 31, DOI: 10.1016/S0898-1221(99)00056-5.

P. G. Patil and N. N. Bhat, Some properties and characterizations of binary soft functions, Southeast Asian Bulletin of Mathematics 47(3) (2023), 381 – 392.

P. G. Patil, V. Elluru and S. Shivashankar, A new approach to MCDM problems by fuzzy binary soft sets, Journal of Fuzzy Extension and Applications 4(3) (2023), 207 – 216, DOI: 10.22105/jfea.2023.390059.1257.

A. R. Roy and P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics 203(2) (2007), 412 – 418, DOI: 10.1016/j.cam.2006.04.008.

M. Shabir and M. Naz, On soft topological spaces, Computers & Mathematics with Applications 61(7) (2011), 1786 – 1799, DOI: 10.1016/j.camwa.2011.02.006.

H. Sivasankari and J. Subhashini, Intuitionistic fuzzy binary soft sets and its properties, Indian Journal of Science and Technology 17(35) (2023), 3636 – 3642, DOI: 10.17485/IJST/v17i35.1161.

B. Tanay and M. B. Kandemir, Topological structure of fuzzy soft sets, Computers & Mathematics with Applications 61(10) (2011), 2952 – 2957, DOI: 10.1016/j.camwa.2011.03.056.

Y.-J. Xu, Y.-K. Sun and D.-F. Li, Intuitionistic fuzzy soft set, in: 2010 2nd International Workshop on Intelligent Systems and Applications (Wuhan, China, 2010), pp. 1 – 4 (2010), DOI: 10.1109/IWISA.2010.5473444.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

20-08-2025
CITATION

How to Cite

Elluru, V., Angadi, B. M., & Patil, P. G. (2025). Intuitionistic Fuzzy Binary Soft Topological Spaces. Communications in Mathematics and Applications, 16(2), 661–668. https://doi.org/10.26713/cma.v16i2.2956

Issue

Section

Research Article