An Investigation of the Bifurcation of Traveling Wave Solutions in Time-Fractional Nonlinear Differential Equations of the Symmetric Case

Authors

  • Mustafa T. Yaseen Department of Management and Marketing for Oil & Gas, College of Industrial Management, Basra University for Oil & Gas, Basrah, Iraq https://orcid.org/0000-0001-7084-8478
  • Mudhir A. Abdul Hussain Department of Mathematics, Education College for Pure Sciences, University of Basrah, Basrah, Iraq https://orcid.org/0000-0002-4730-6942

DOI:

https://doi.org/10.26713/cma.v16i2.2906

Keywords:

Differential equations, Bifurcation analysis, Complex transform

Abstract

This study considers examining and bifurcation of traveling wave solutions in time-fractional nonlinear differential equations of the symmetric case. We blend Li and He’s derivative of fractional order techniques with Lyapunov-Schmidt reduction in our approach. To simplify the analysis, the initial fractional equation that is differential is transformed into a partial differential equation through the utilization of the fractional complex transform. This conversion results in a condensed equation, presented as a pair of nonlinear algebraic equations, tackling the core issue. Furthermore, our investigation involves examining linear approximation solutions for a nonlinear fractional equation (NFE) that is differential.

Downloads

Download data is not yet available.

References

H. O. AL-Humedi and F. L. Hasan, The numerical solutions of nonlinear time-fractional differential equations by LMADM, Iraqi Journal of Science 2021(Special issue 2) (2021), pp. 17 – 26, DOI: 10.24996/ijs.2021.si.2.2.

M. Amir, Q. Ali, A. Raza, M. Y. Almusawa, W. Hamali and A. H. Ali, Computational results of convective heat transfer for fractionalized Brinkman type tri-hybrid nanofluid with ramped temperature and non-local kernel, Ain Shams Engineering Journal 15(3) (2024), 102576, DOI: 10.1016/j.asej.2023.102576.

U. Arshad, M. Sultana, A. H. Ali, O. Bazighifan, A. A. Al-Moneef and K. Nonlaopon, Numerical solutions of fractional-order electrical RLC circuit equations via three numerical techniques, Mathematics 10(17) (2022), 3071, DOI: 10.3390/math10173071.

R. Ashraf, R. Nawaz, O. Alabdali, N. Fewster-Young, A. H. Ali, F. Ghanim and A. A. Lupas, A new hybrid optimal auxiliary function method for approximate solutions of non-linear fractional partial differential equations, Fractal and Fractional 7(9) (2023), 673, DOI: 10.3390/fractalfract7090673.

M. S. Berger, Nonlinearity and Functional Analysis: Lectures on Nonlinear Problem in Mathematical Analysis, 1st edition, Academic Press, Inc., 418 pages (1977).

F. Ghanim, F. S. Khan, A. H. Ali and A. Atangana, Generalized Mittag-Leffler-confluent hypergeometric functions in fractional calculus integral operator with numerical solutions, Journal of Mathematical Analysis and Applications 543(2) (Part 2) (2025), 128917, DOI: 10.1016/j.jmaa.2024.128917.

F. Ghanim, F. S. Khan, H. F. Al-Janaby and A. H. Ali, A new hybrid special function class and numerical technique for multi-order fractional differential equations, Alexandria Engineering Journal 104 (2024), 603 – 613, DOI: 10.1016/j.aej.2024.08.009.

S. Guo, L. Q. Mei, Y. Li and Y. F. Sun, The improved fractional sub-equation method and its applications to the space–time fractional differential equations in fluid mechanics, Physics Letters A 376(4) (2012), 407 – 411, DOI: 10.1016/j.physleta.2011.10.056.

M. A. A. Hussain, Bifurcation solutions of elastic beams equation with small perturbation, International Journal of Mathematical Analysis 3(18) (2009), 879 – 888.

M. A. A. Hussain, Nonlinear Ritz approximation for Fredholm functionals, Electronic Journal of Differential Equations 2015(294) (2015), 1 – 11, URL: https://ejde.math.txstate.edu/Volumes/2015/294/abdul.pdf.

F. S. Khan, M. Khalid, A. A. Al-Moneef, A. H. Ali and O. Bazighifan, Freelance model with Atangana-Baleanu Caputo fractional derivative, Symmetry 14(11) (2022), 2424, DOI: 10.3390/sym14112424.

Z.-B. Li and J.-H. He, Converting fractional differential equations into partial differential equations, Thermal Science 16(2) (2012), 331 – 334, DOI: 10.2298/tsci110503068h.

Z.-B. Li and J.-H. He, Fractional complex transform for fractional differential equations, Mathematical and Computational Applications 15(5) (2010), 970 – 973, DOI: 10.3390/mca15050970.

F.-J. Liu, Z.-B. Li, S. Zhang and H.-Y. Liu, He’s fractional derivative for heat conduction in a fractal medium arising in silkworm cocoon hierarchy, Thermal Science 19(4) (2015), 1155 – 1159, DOI: 10.2298/tsci1504155l.

B. V. Loginov, Branching Theory of Solutions of Nonlinear Equations under Group Invariance Conditions, Fan, Tashkent, (1985).

B. Lu, The first integral method for some time fractional differential equations, Journal of Mathematical Analysis and Applications 395(2) (2012), 684 – 693, DOI: 10.1016/j.jmaa.2012.05.066.

A. A. Mizeal and M. A. A. Hussain, Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation, Archivum Mathematicum 48(1) (2012), 27 – 37, DOI: 10.5817/am2012-1-27.

Yu. I. Sapronov and V. R. Zachepa, Local Analysis of Fredholm Equation, Voronezh University, Voronezh, Russia (2002).

Yu. I. Sapronov, Finite-dimensional reductions of smooth extremal problems, Russian Mathematical Surveys 51(1) (1996), 97 – 127, DOI: 10.1070/RM1996v051n01ABEH002741.

Yu. I. Sapronov, Regular perturbation of Fredholm maps and theorem about odd field, Works Department of Mathematics, Voronezh University, Voronezh, V. 10 (1973), 82.88.

M. M. Vainberg and V. A. Trenogin, Theory of Branching Solutions of Nonlinear Equations, Wolters-Noordhoff B.V., 510 pages (1974).

S. Zhang and H.-Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Physics Letters A 375(7) (2011), 1069 – 1073, DOI: 10.1016/j.physleta.2011.01.029.

Downloads

Published

20-08-2025
CITATION

How to Cite

Yaseen, M. T., & Hussain, M. A. A. (2025). An Investigation of the Bifurcation of Traveling Wave Solutions in Time-Fractional Nonlinear Differential Equations of the Symmetric Case. Communications in Mathematics and Applications, 16(2), 669–677. https://doi.org/10.26713/cma.v16i2.2906

Issue

Section

Research Article