Integral Transforms of Pragathi-Satyanarayana’s \(I\)-function

Authors

  • B. Satyanarayana Department of Mathematics, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India https://orcid.org/0000-0002-1265-4189
  • D. K. Pavan Kumar Department of Mathematics, Seshadri Rao Gudlavalleru Engineering College (affiliated to Jawaharlal Nehru Technological University), Gudlavalleru, Vijayawada 521356, Andhra Pradesh, India https://orcid.org/0000-0001-5141-4586
  • Y. Pragathi Kumar Department General Studies, University of the People (Remote), Pasadena, California, USA https://orcid.org/0000-0002-6682-8340
  • N. Srimannarayana Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation (Deemed to be University), Vaddeswaram, Guntur 522302, Andhra Pradesh, India https://orcid.org/0009-0002-9726-8400

DOI:

https://doi.org/10.26713/cma.v16i2.2678

Keywords:

Pragathi-Satyanarayana I-function, Hankel transform, Sumudu transform, K-transform, Euler-beta transforms

Abstract

Many of the transformations like Euler, Hankel, Sumudu and \(K\)-transforms play a vital role in the field of engineering mathematics and have many applications. This paper refers to the study of Pragathi-Satyanarayana \(I\)-function of one variable. As a part of this study, we obtain different integral transforms of Pragathi-Satyanarayana \(I\)-function of one variable. Also, some of the~generalized transforms have been obtained as special cases. The integral transformations developed here are useful in real-world applications of mathematical science.

Downloads

Download data is not yet available.

References

I. Ali and S. Kalla, A generalized Hankel transform and its use for solving certain partial differential equations, The Journal of the Australian Mathematical Society Series B Applied Mathematics 41(1) (1999), 105 – 117, DOI: 10.1017/S0334270000011061.

F. Y. Ayant, On transformation involving basic I-function of two variables, International Journal of Mathematics Trends and Technology 62(3) (2018), 158 – 163, DOI: 10.14445/22315373/IJMTTV62P522.

F. B. M. Belgacem and A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, International Journal of Stochastic Analysis 2006(1) (2006), 091083, DOI: 10.1155/JAMSA/2006/91083.

F. B. M. Belgacem, A. A. Karaballi and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Mathematical Problems in Engineering 2003(3) (2003), 103 – 118, DOI: 10.1155/S1024123X03207018.

M. A. Choudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, Journal of Computational and Applied Mathematics 78(1) (1997), 19 – 32, DOI: 10.1016/S0377-0427(96)00102-1.

C. Fox, The G and H-functions as symmetrical Fourier kernels, Transactions of the American Mathematical Society 98 (1961), 395 – 429, DOI: 10.1090/S0002-9947-1961-0131578-3.

I. S. Gradshteyin and I. M. Ryzhik, Table of Integrals, Series and Products, 8th edition, Academic Press, (translated from Russian by Scripta Technica, Inc.), xlv + 1133 pages (2015).

H. Jafari, A new general integral transform for solving integral equations, Journal of Advanced Research 32 (2021), 133 – 138, DOI: 10.1016/j.jare.2020.08.016.

J. A. Jasim, E. A. Kuffi and S. A. Mehdi, A review on the integral transforms, Journal of University of Anbar for Pure Science 17(2) (2023), 273 – 310, DOI: 10.37652/juaps.2023.141302.1090.

P. Jayarama and A. K. Rathie, A class of definite integrals involving generalized hypergeometric functions, Publications De L’institut Mathématique 115(129) (2024), 157 – 172, DOI: 10.2298/PIM2429157J.

Y. P. Kumar and B. Satyanarayana, A study of Psi-function, Journal of Informatics and Mathematical Sciences 12(2) (2020), 159 – 171, DOI: 10.26713/jims.v12i2.1340.

A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, 1st edition, Springer-Verlag, Berlin – Heidelberg, x + 318 pages (1973), DOI: 10.1007/BFb0060468.

J. Mishra and Vandana, Some new integral relation of I-function, Fractal Geometry and Non-linear Analysis in Medicine and Biology 2(3) (2016), 1 – 3, DOI: 10.15761/FGNAMB.1000141.

C. Nasim, On K-transform, International Journal of Mathematics and Mathematical Sciences 4(3) (1981), 870743, DOI: 10.1155/S0161171281000355.

A. K. Rathie, A new generalization of generalized hypergeometric functions, Le Matematiche LII(II) (1997), 297 – 310.

P. E. Ricci, D. Caratelli and P. Natalini, Laplace transform of analytic composite functions via Bell’s polynomials, Applicable Analysis and Discrete Mathematics 18(1) (2024), 229 – 243, URL: https://www.jstor.org/stable/27303534.

B. Satyanarayana, P. Y. Kumar and B. V. Purnima, On Euler-beta transforms of I-function of two variables, Bulletin of Pure & Applied Sciences – Mathematics and Statistics 37E(1) (2018), 171 – 177, DOI: 10.5958/2320-3226.2018.00017.6.

S. A. H. Shah, S. Mubeen, G. Rahman and J. A. Younis, Relation of some known functions in terms of generalized Meijer G-functions, Journal of Mathematics 2021(1) (2021), 7032459, DOI: 10.1155/2021/7032459.

H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi – Madras (1982).

Downloads

Published

20-08-2025
CITATION

How to Cite

Satyanarayana, B., Kumar, D. K. P., Kumar, Y. P., & Srimannarayana, N. (2025). Integral Transforms of Pragathi-Satyanarayana’s \(I\)-function. Communications in Mathematics and Applications, 16(2), 517–524. https://doi.org/10.26713/cma.v16i2.2678

Issue

Section

Research Article