An Application of Differential Transform Method to Solve an Epidemic Model — Ebola Virus Disease Outbreaks

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2512

Keywords:

Ebola Virus Disease (EVD), Differential transform method, Variational iteration method

Abstract

An epidemic is defined as an unusually large, short-term disease outbreak. Various factors influence a disease’s spread from person to person. These include the infectious again itself, its mode of transmission, infectious period and its susceptibility and resistance. In this work, we consider a system of non-linear differential equations which constructed as a mathematical model of disease due to Ebola Virus Disease. This model is divided into five compartments as SIRDP (SusceptibleInfected-Recovered-Deceased-Pathogens). Further, we solve this model by one of the novel techniques the Differential Transform Method (DTM). Moreover, the simulation of solution derived by DTM is compared with VIM.

Downloads

Download data is not yet available.

References

S. Abbasbandy and E. Shivanian, Application of the variational iteration method for system of nonlinear Volterra’s integro-differential equations, Mathematical and Computational Applications 14(2) (2009), 147–158, DOI: 10.3390/mca14020147.

F. B. Agusto, M. I. Teboh-Ewungkem and A. B. Gumel, Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks, BMC Medicine 13 (2015), Article number: 96, DOI: 10.1186/s12916-015-0318-3.

F. S. Akinboro, S. Alao and F. O. Akinpelu, Numerical solution of SIR model using differential transformation method and variational iteration method, General Mathematics Notes 22 (2) (2014), 82 – 92, URL: https://www.emis.de/journals/GMN/yahoo_site_admin/assets/docs/7_GMN-4532-V22N2.247120444.pdf.

I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh and Á. Torres, On a fractional order Ebola epidemic model, Advances in Difference Equations 2015 (2015), Article number: 278, DOI: 10.1186/s13662-015-0613-5.

F. Ayaz, Applications of differential transform method to differential-algebraic equations, Applied Mathematics and Computation 152(3) (2004), 649 – 657, DOI: 10.1016/S0096-3003(03)00581-2.

D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti and M. Ciccozzi, Application of the ARIMA model on the COVID-2019 epidemic dataset, Data in Brief 29 (2020), 105340, DOI: 10.1016/j.dib.2020.105340.

T. Berge, J. M.-S. Lubuma, G. M. Moremedi, N. Morris and R. Kondera-Shava, A simple mathematical model for Ebola in Africa, Journal of Biological Dynamics 11(1) (2017), 42 – 74, DOI: 10.1080/17513758.2016.1229817.

J. Biazar and H. Ghazvini, He’s variational iteration method for solving linear and non-linear systems of ordinary differential equations, Applied Mathematics and Computation 191(1) (2007), 287 – 297, DOI: 10.1016/j.amc.2007.02.153.

K. Bibby, L. W. Casson, E. Stachler and C. N. Haas, Ebola virus persistence in the environment: State of the knowledge and research needs, Environmental Science & Technological Letters 2 (2015), 2 – 6, DOI: 10.1021/ez5003715.

G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore and J. M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, Journal of Theoretical Biology 229(1) (2004), 119 – 126, DOI: 10.1016/j.jtbi.2004.03.006.

D. Fisman, E. Khoo and A. Tuite, Early epidemic dynamics of the west African 2014 Ebola outbreak: estimates derived with a simple two-parameter model, PLOS Currents 6 (2014), URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169344/.

A. Harir, S. Melliani, H. El Harfi and L. S. Chadli, Variational iteration method and differential transformation method for solving the SEIR epidemic model, International Journal of Differential Equations 2020 (2020), Article ID 3521936, 7 pages, DOI: 10.1155/2020/3521936.

M. Hatami, D. D. Ganji and M. Sheikholeslami, Differential Transformation Method for Mechanical Engineering Problems, Elsevier Science, 422 pages (2016).

J.-H. He, Variational iteration method – a kind of non-linear analytical technique: some examples, International Journal of Non-Linear Mechanics 34 (1999), 699 – 708, DOI: 10.1016/S0020-7462(98)00048-1.

J. He, Variational iteration method for delay differential equations, Communications in Nonlinear Science and Numerical Simulation 2(4) (1997), 235 – 236, DOI: 10.1016/S1007-5704(97)90008-3.

B. Ivorra, D. Ngom and Á. M. Ramos, Be-CoDiS: A mathematical model to predict the risk of human diseases spread between countries-validation and application to the 2014-2015 Ebola virus disease epidemic, Bulletin of Mathematical Biology 77 (2015), 1668 – 1704, DOI: 10.1007/s11538-015-0100-x.

M. L. Juga, F. Nyabadza and F. Chirove, An Ebola virus disease model with fear and environmental transmission dynamics, Infectious Disease Modelling 6 (2021), 545 – 559, DOI: 10.1016/j.idm.2021.03.002.

D. G. Kendall, Deterministic and stochastic epidemics in closed populations, in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Contributions to Biology and Problems of Health, J. Neyman (editor), Vol. 4 (1956), pp. 149 – 165, University of California Press, URL: https://digitalassets.lib.berkeley.edu/math/ucb/text/math_s3_v4_article-08.pdf.

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115 (772) (1927), 700 – 721, URL: https://www.jstor.org/stable/94815.

J. Legrand, R. F. Grais, P. Y. Boelle, A. J. Valleron and A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiology & Infection 135(4) (2007), 610 – 621, DOI: 10.1017/S0950268806007217.

P. E. Lekone and B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics 62(4) (2006), 1170 – 1177, DOI: 10.1111/j.1541-0420.2006.00609.x.

E. M. Leroy, B. Kumulungui, X. Pourrut, P. Rouquet, A. Hassanin, P. Yaba, A. Délicat, J. T. Paweska, J.-P. Gonzalez and R. Swanepoel, Fruit bats as reservoirs of Ebola virus, Nature 438 (2005), 575 – 576, DOI: 10.1038/438575a.

E. M. Leroy, P. Rouquet, P. Formenty, S. Souquière, A. Kilbourne, J.-M. Froment, M. Bermejo, S. Smit, W. Karesh, R. Swanepoel, S. R. Zaki and P. E. Rollin, Multiple Ebola virus transmission events and rapid decline of central African wildlife, Science 303(5656) (2004), 387 – 390, DOI: 10.1126/science.1092528.

A. Nazir, N. Ahmed, U. Khan, S. T. Mohyud-Din, K. S. Nisar and I. Khan, An advanced version of a conformable mathematical model of Ebola virus disease in Africa, Alexandria Engineering Journal 59(5) (2020), 3261 – 3268, DOI: 10.1016/j.aej.2020.08.050.

D. Ndanguza, J. M. Tchuenche and H. Haario, Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo, Afrika Matematika 24 (2013), 55 – 68, DOI: 10.1007/s13370-011-0039-5.

A. Rachah and D. F. M. Torres, Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa, Discrete Dynamics in Nature and Society 2015 (2015), Article ID 842792, 9 pages, DOI: 10.1155/2015/842792.

R. Ross, The Prevention of Malaria, E. P. Dutton & Company, 669 pages (1910).

R. Ross and H. P. Hudson, An application of the theory of probabilities to the study of a priori pathometry – Part II, Proceedings of the Royal Society of London – Series A, 93(650) (1917), 212 – 225, DOI: 10.1098/rspa.1917.0014.

A.-M. Wazwaz, The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients, Open Engineering 4(1) (2014), 64 – 71, DOI: 10.2478/s13531-013-0141-6.

J. K. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan (1986).

Downloads

Published

25-12-2023
CITATION

How to Cite

Preethi, G. T., & Magesh, . N. (2023). An Application of Differential Transform Method to Solve an Epidemic Model — Ebola Virus Disease Outbreaks. Communications in Mathematics and Applications, 14(4), 1301–1310. https://doi.org/10.26713/cma.v14i4.2512

Issue

Section

Research Article