Micropolar Nanofluid Flow, Thermal and Mass Transfer Properties Across a Stretching Sheet With a Predetermined Surface Heat Flux

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2147

Keywords:

Micropolar nanofluid, Brownian motion, Thermophoresis, Unsteady parameter, Material parameter and shooting technique

Abstract

The features of two-dimensional immiscible laminar flow of micropolar nanofluid over an unstable stretching sheet with a predetermined surface heat flux are examined in this problem. The thermal boundary conditions have an impact on heat transfer properties. The similarity transformations are utilized to transfigure highly non-linear guided PDE into ODEs. Shooting technique is used to resolve these equations. There are several flow characteristics that are relevant to this issue, including the unsteadiness parameter (S), material parameter (m), viscosity (K), Prandtl number (Pr), Brownian motion parameter (Nb), and thermophoretic parameter (Nt). Graphs are used to study the impact of various flow parameters on liquid velocity, micropolar, temperature, and nonoparticle concentration profile. In order to obtain the findings for this problem, we used the tbvp4c Matlab programme. We noticed that velocity profile, thermal profile, microrotation of the particle, and nanoparticle concentration profile all diminish as an unsteady number S increasing, micropolar profile increases. With a rise in boundary parameter m, the micropolar fluid profile and the concentration of nanoparticle profiles are dropping while the velocity profile and temperature profile are rising. The temperature profile is rising while the volume fraction of nanoparticle is falling as the Brownian motion Nb increasing. The thermal profile and nanoparticle concentration profile both rise with an increase in the thermophoretic number Nt. With an increasing of magnetic field parameter M, the velocity profile and micropolar profile are declining, but the thermal and nanoparticle concentration profile is rising.

Downloads

Download data is not yet available.

References

R. Ahmad, M. Mustafa, T. Hayat and A. Alsaedi, Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet, Journal of Magnetism and Magnetic Materials 407 (2016), 69 – 74, DOI: 10.1016/j.jmmm.2016.01.038.

N. S. Anuar and N. Bachok, Double solutions and stability analysis of micropolar hybrid nanofluid with thermal radiation impact on unsteady stagnation point flow, Mathematics 9(3) (2021), 1 – 18, DOI: 10.3390/math9030276.

H. D. Assres, D. Hymavathi and N. Kishan, Heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium in the presence of chemical reaction and radiation, Journal of Advances in Mathematics 9(6) (2014), 2710 – 2722.

N. Bachok, A. Ishak and R. Nazar, Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid with prescribed surface heat flux, International Journal of Mathematical Models and Methods in Applied Sciences 4(3) (2010), 167 – 176, URL: https://www.naun.org/main/NAUN/ijmmas/19-354.pdf.

G. C. Bourantas and V. C. Loukopoulos, Modeling the natural convective flow of micropolar nanofluids, International Journal of Heat and Mass Transfer 68 (2014), 35 – 41, DOI: 10.1016/j.ijheatmasstransfer.2013.09.006.

S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, (1995), URL: https://www.osti.gov/servlets/purl/196525.

A. C. Eringen, Memory-dependent orientable nonlocal micropolar fluids, International Journal of Engineering Science 29(12) (1991), 1515 – 1529, DOI: 10.1016/0020-7225(91)90123-K.

A. C. Eringen, Micropolar fluids with stretch, International Journal of Engineering Science 7(1) (1969), 115 – 127, DOI: 10.1016/0020-7225(69)90026-3.

A. C. Eringen, Theory of anisotropic micropolar fluids, International Journal of Engineering Science 18(1) (1980), 5 – 17, DOI: 10.1016/0020-7225(80)90003-8.

A. C. Eringen, Theory of thermomicrofluids, Journal of Mathematical Analysis and Applications 38(2) (1972), 480 – 496, DOI: 10.1016/0022-247X(72)90106-0.

K. Gangadhar, D. Vijayakumar, A. J. Chamkha, T. Kannan and G. Sakthivel, Effects of Newtonian heating and thermal radiation on micropolar ferrofluid flow past a stretching surface: Spectral quasi-linearization method, Heat Transfer 49(2) (2019), 838 – 857, DOI: 10.1002/htj.21641.

K.-L. Hsiao, Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, International Journal of Heat and Mass Transfer 112 (2017), 983 – 990, DOI: 10.1016/j.ijheatmasstransfer.2017.05.042.

D. Hymavathi and K. Naikoti, Study on radiative MHD nanofluid flow over a vertically stretching sheet in the presence of buoyancy forces with viscous dissipation, Newest Updates in Physical Science Research 10 (2021), 44 – 58, DOI: 10.9734/bpi/nupsr/v10/2523E.

D. Hymavath, S. Jagadha and N. Kishan, Hall current effects on MHD free convection nanofluid over an inclined hot plate with viscous dissipation, Journal of Ultra Scientist of Physical Sciences 31(4) (2019), 32 – 42, DOI: 10.22147/jusps-a/310401.

D. Hymavathi, K. Naikoti and Jagada, Effects of MHD free convective heat transfer of micropolar nanofluid over vertical plate along with the chemical reaction and thermal radiation, Advances and Applications in Fluid Mechanics 22(1) (2019), 1 – 23, DOI: 10.17654/fm022010001.

W. Ibrahim and C. Zemedu, MHD nonlinear natural convection flow of a micropolar nanofluid past a nonisothermal rotating disk, Heat Transfer 50(1) (2021), 564 – 595, DOI: 10.1002/htj.21894.

W. Ibrahim and G. Gadisa, Finite element analysis of couple stress micropolar nanofluid flow by non-Fourier’s law heat flux model past stretching surface, Heat Transfer – Asian Research 48(8) (2019), 3763 – 3789, DOI: 10.1002/htj.21567.

C. Kalyani, M. C. K. Reddy and N. Kishan, MHD mixed convection flow past a vertical porous plate in a porous medium with heat source/sink and soret effects, Chemical Science International Journal 7(3) (2015), 150 – 159, DOI: 10.9734/acsj/2015/16257.

K. A. Kumar, V. Sugunamma and N. Sandeep, A non-Fourier heat flux model for magnetohydrodynamic micropolar liquid flow across a coagulated sheet, Heat Transfer – Asian Research 48(7) (2019), 2819 – 2843, DOI: 10.1002/htj.21518.

N. A. A. Latiff, M. J. Uddin, O. A. Bég and A. I. Ismail, Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet, Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 230(4) (2016), 177 – 187, DOI: 10.1177/1740349915613817.

L. A. Lund, Z. Omar, J. Raza and I. Khan, Triple solutions of micropolar nanofluid in the presence of radiation over an exponentially preamble shrinking surface: Convective boundary condition, Heat Transfer 49(5) (2020), 3075 – 3093, DOI: 10.1002/htj.21763.

S. Manjunatha, V. Puneeth, B. J. Gireesha and A. J. Chamkha, Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet, Journal of Applied and Computational Mechanics 8(4) (2022), 1279 – 1286, DOI: 10.22055/JACM.2021.37698.3067.

S. Mishra, B. Mahanthesh, J. Mackolil and P. K. Pattnaik, Nonlinear radiation and cross-diffusion effects on the micropolar nanoliquid flow past a stretching sheet with an exponential heat source, Heat Transfer 50(4) (2021), 3530 – 3546, DOI: 10.1002/htj.22039.

T. Mukhtar, W. Jamshed, A. Aziz and W. Al-Kouz, Computational investigation of heat transfer in a flow subjected to magnetohydrodynamic of Maxwell nanofluid over a stretched flat sheet with thermal radiation, Numerical Methods for Partial Differential Equations 39(5) (2020), 3499 – 3519, DOI: 10.1002/num.22643.

H. R. Patel, A. S. Mittal and R. R. Darji, MHD flow of micropolar nanofluid over a stretching/shrinking sheet considering radiation, International Communications in Heat and Mass Transfer 108 (2019), 104322, DOI: 10.1016/j.icheatmasstransfer.2019.104322.

A. B. Patil, P. P. Humane, V. S. Patil and G. R. Rajput, MHD Prandtl nanofluid flow due to convectively heated stretching sheet below the control of chemical reaction with thermal radiation, International Journal of Ambient Energy 43(1) (2022), 4310 – 4322, DOI: 10.1080/01430750.2021.1888803.

O. Pourmehran, M. Rahimi-Gorji and D. D. Ganji, Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field, Journal of the Taiwan Institute of Chemical Engineers 65 (2016), 162 – 171, DOI: 10.1016/j.jtice.2016.04.035.

K. Rafique, M. I. Anwar, M. Misiran and M. I. Asjad, Energy and mass transport of micropolar nanofluid flow over an inclined surface with Keller-Box simulation, Heat Transfer 49(8) (2020), 4592 – 4611, DOI: 10.1002/htj.21843.

K. Rafique, H. Alotaibi, T. A. Nofal, M. I. Anwar, M. Misiran and I. Khan, Numerical solutions of micropolar nanofluid over an inclined surface using keller box analysis, Journal of Mathematics 2020 (2020), Article ID 6617652, DOI: 10.1155/2020/6617652.

M. M. Rashidi, N. V. Ganesh, A. K. A. Hakeem and B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation, Journal of Molecular Liquids 198 (2014), 234 – 238, DOI: 10.1016/j.molliq.2014.06.037.

N. G. Stepha and D. K. Jacob, Analysis on physical properties of micropolar nanofluid past a constantly moving porous plate, IOP Conference Series: Materials Science and Engineering 1206 (2021), 012004, DOI: 10.1088/1757-899x/1206/1/012004.

M. Subhani and S. Nadeem, Numerical analysis of micropolar hybrid nanofluid, Applied Nanoscience 9 (2019), 447 – 459, DOI: 10.1007/s13204-018-0926-2.

J. K. Sundarnath and R. Muthucumarswamy, Hall effects on Mhd flow past an accelerated plate with heat transfer, International Journal of Applied Mechanics and Engineering 20(1) (2015), 171 – 181, DOI: 10.1515/ijame-2015-0012.

Downloads

Published

18-09-2023
CITATION

How to Cite

Hymavathi, D. (2023). Micropolar Nanofluid Flow, Thermal and Mass Transfer Properties Across a Stretching Sheet With a Predetermined Surface Heat Flux. Communications in Mathematics and Applications, 14(2), 619–631. https://doi.org/10.26713/cma.v14i2.2147

Issue

Section

Research Article