### Generalized Arithmetic Graphs With Equal and Unequal Powers of Annihilator Domination Number

#### Abstract

Current work is carried out in Generalized Arithmetic Graphs to explore the theory of conquest by the Annihilator Dominion Number of Upper bound. Kulli and Janakiram [8] first demonstrated split domination while Suryanarayana Rao and Vangipuram [12] introduced the domination of Annihilator and obtained several interesting results in Arithmetic graphs. There are few significant and important studies on Annihilator’s domination being examined in the current paper.

#### Keywords

#### Full Text:

PDF#### References

T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, Berlin — Heidelberg (1980), DOI: 10.1007/978-1-4757-5579-4.

S. Arumugam and A. Thuraiswamy, Total domination in graph, Ars Combinatoria 43 (1996), 89 – 92, http://14.139.186.253/id/eprint/2496.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland (1976), https://snscourseware.org/snsrcas/files/CW_5d16efa85c2e3/BondyMurtyGTWA-compressed.pdf.

E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247 – 271, DOI: 10.1002/net.3230070305.

E. J. Cockayne, R. W. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211 – 219, DOI: 10.1002/net.3230100304.

F. Harary, Graph Theory, Addison-Wesley, Massachusetts (1969), https://www.worldcat.org/title/graph-theory/oclc/64676.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Graph Domination, Marcel-Dekkar, Inc., New York (1998), https://www.routledge.com/Fundamentals-of-Dominationin-Graphs/Haynes-Hedetniemi-Slater/p/book/9780824700331.

V. R. Kulli and B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York, New York Academy of Sciences, XXXII (1997), 16 – 19.

R. Laskar and H. B. Walikar, On domination related concepts in graph theory, in: Combinatorics and Graph Theory, Lecture Notes in Mathematics 885 (1981), 308 – 320, Springer, Berlin — Heidelberg, DOI: 10.1007/BFb0092276.

K. V. S. Rao and V. Sreeenivasan, Split domination in product graphs, I.J. Information Engineering and Electronic Business 4 (2013), 51 – 57, http://www.mecs-press.com/ijieeb/ijieeb-v5-n4/IJIEEB-V5-N4-7.pdf.

K. V. S. Rao and V. Sreeenivasan, The split domination in arithmetic graphs, International Journal of Computer Applications 29(3) (2011), 46 – 49, DOI: 10.1.1.259.652.

K. V. Suryanarayana Rao and Vangipuram, The annihilator domination in some standard graphs and arithmetic graphs, International Journal of Pure and Applied Mathematics 106(8) (2016), 123 – 135, DOI: 10.12732/ijpam.v106i8.16.

N. Vasumathi and S. Vangipuram, Existence of a graph with a given domination parameter, in: Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications, University of Madras, Madras, 187 – 195 (1995), https://www.academia.edu/33290904/Domination-in-Graph-with-Application.

DOI: http://dx.doi.org/10.26713%2Fcma.v12i1.1406

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905