About Riemann’s Zeta-Function and Applications

N. Daili

Abstract


In this paper we give some remarks on the Riemann’s zeta-function related to theoretic arithmetic functions and some applications.


Keywords


Theoretic arithmetic function; Riemann zeta-function; Functional equation; Applications

Full Text:

PDF

References


P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, Springer-Verlag (2007), URL: https://pdfs.semanticscholar.org/d498/a6c9fda1bef6a3e4feec2034e33fd864826f.pdf.

N. Daili, On the Riemann Hypothesis, Far East Journal of Mathematical Education 9(2) (2012), 169 – 183, URL: http://www.pphmj.com/abstract/7120.htm.

N. Daili, About Dirichlet’s Transformation and Theoretic-Arithmetic Functions, General Mathematics Notes 3(2) (2011), 108 – 112, URL: https://www.researchgate.net/profile/N_Daili/publication/326658457.

G.-J. De La Vallée Poussin, Recherches analytiques sur la théorie des nombres premiers, Ann. Soc. Scient. Bruxelles 20 (1896), 183 – 256.

L. Euler, Variae observationes circa series infinitas (Various Observations about Infinite Series), Thesis, published by St. Petersburg Academy in 1737, URL: https://publicacions.iec.cat/Front/repository/pdf/00000123/00000101.pdf.

H. M. Edwards, Riemann’s Zeta Function, Dover Publications, New York (1974), URL: https://books.google.co.in/books?id=ruVmGFPwNhQC&printsec=frontcover#v=onepage&q&f=false.

J. Hadamard, Sur la distribution des zéros de la fonction Zeta et ses conséquences arithmétiques, Bulletin de la Société Mathématique de France 24 (1896), 199 – 220, DOI: 10.24033/bsmf.545.

B. Riemann, On the Number of Prime Numbers less than a Given Quantity, Translated by D. R. Wilkins, Clay Mathematics Institute (1998), URL: https://www.claymath.org/sites/default/files/ezeta.pdf.




DOI: http://dx.doi.org/10.26713%2Fcma.v11i3.1399

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905