### Regularity of Linear Hypersubstitutions for Algebraic Systems of Type \(((n),(m))\)

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer Verlag, New York (1981), DOI: 10.1080/00029890.1984.11971342, https://books.google.co.in/books/about/A_Course_in_Universal_Algebra.html?id=X_HboAEACAAJ&source=kp_cover&redir_esc=y.

T. Changphas, K. Denecke and B. Pibaljommee, Linear Terms and Linear Hypersubstitutions, to be appeared in Southeast Asian Bulletin of Mathematics.

M. Couceiro and E. Lehtonen, Galois theory for sets of operations closed under permutation, cylindrification and composition, Algebra Universalis 67 (2012), 273 – 297, DOI: 10.1007/s00012-012-0184-1.

K. Denecke, The partial clone of linear terms, Siberian Mathematical Journal 57 (2016), 589 – 598, DOI: 10.1134/s0037446616040030.

K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes,and clone congruences, Contributions to General Algebra, Vol. 7, Verlag Hölder-Pichler-Tempsky, Wien (1991), 97 – 118.

K. Denecke and D. Phusanga, Hyperformulas and solid algebraic systems, Studia Logica 90(2) (2008), 263 – 286, DOI: 10.1007/s11225-008-9152-3.

K. Denecke and S.L. Wismath, Hyperidentities and Clones, CRC Press, London (2000), DOI: 10.1201/9781482287516.

T. Kumduang and S. Leeratanavalee, Clone of linear terms and clone of linear formulas, East-West Journal of Mathematics 19(2) (2017), 156 – 170.

A.I. Mal’cev, Algebraic Systems, Akademie-Verlag, Berlin (1973).

D. Phusanga, Derived Algebric Systems, Ph.D. thesis, Universitat Potsdam, Germany (2013).

S.L. Wismath, The monoid of hypersubstitutions of type (n), Southeast Asian Bulletin of Mathematics 24 (2000), 115 – 128, DOI: 10.1007/s10012-000-0115-5.

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905