Existence of Fixed Points for An Integral Operator via Fixed Point Theorem on Gauge Spaces

Muhammad Usman Ali, Poom Kumam, . Fahimuddin

Abstract


In this paper we have discussed the existence of fixed points for an integral operator using a new fixed point theorem in the setting of gauge spaces.

Keywords


Gauge spaces; \(F\)-contractions; Integral operator

Full Text:

PDF

References


R.P. Agarwal, Y.J. Cho and D. O’Regan, Homotopy invariant results on complete gauge spaces, Bull. Austral. Math. Soc. 67 (2003), 241 – 248, doi:10.1017/S0004972700033700.

M.U. Ali and T. Kamran, On $(alpha^*,psi)$-contractive multi-valued mappings, Fixed Point Theory Appl. 2013 (2013), 137, doi:10.1186/1687-1812-2013-137.

J.H. Asl, S. Rezapour and N. Shahzad, On fixed points of $alpha$-$psi$-contractive multifunctions, Fixed Point Theory Appl. 2012 (2012), 212, doi:10.1186/1687-1812-2012-212.

M. Cherichi, B. Samet and C. Vetro, Fixed point theorems in complete gauge spaces and applications to second order nonlinear initial value problems, J. Funct. Space Appl. 2013 (2013), 293101.

M. Cherichi and B. Samet, Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations, Fixed Point Theory Appl. 2012 (2012), 13, doi:10.1186/1687-1812-2012-13.

C. Chifu and G. Petrusel, Fixed point results for generalized contractions on ordered gauge spaces with applications, Fixed Point Theory Appl. 2011 (2011), 979586.

A. Chis and R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point Theory Appl. 3 (2004), 173 – 185, doi:10.1155/S1687182004403027.

M. Cosentino and P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat 28 (2014), 715 – 722, doi:10.2298/FIL1404715C.

J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., USA (1966).

M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications, Proceed. Amer. Math. Soc. 128 (2000), 2957 – 2965, doi:10.1090/S0002-9939-00-05838-X.

M. Jleli, E. Karapinar and B. Samet, Fixed point results for $alpha$-$psi_lambda$-contractions on gauge spaces and applications, Abstr. Appl. Anal. 2013 (2013), 730825.

E. Karapinar, H. Aydi and B. Samet, Fixed points for generalized $(alpha,psi)$-contractions on generalized metric spaces, J. Inequal. Appl. 2014 (2014), 229.

T. Lazara andd G. Petrusel, Fixed points for non-self operators in gauge spaces, J. Nonlinear Sci. Appl. 6 (2013), 2934.

G. Minak, A. Helvac and I. Altun, Ciric type generalized F-contractions on complete metric spaces and fixed point results, Filomat 28 (6) (2014), 1143 – 1151, doi:10.2298/FIL1406143M.

G. Minak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Inequal. Appl. 2013 (2013), 493, doi:10.1186/1029-242X-2013-493.

B. Mohammadi, S. Rezapour and N. Shahzad, Some results on fixed points of $alpha$-$psi$-Ciric generalized multifunctions, Fixed Point Theory Appl. 2013 (2013), 24, doi:10.1186/1687-1812-2013-24.

D. Paesano and C. Vetro, Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 108 (2) (September 2014), 1005 – 1020.

H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210, doi:10.1186/1687-1812-2014-210.

N.A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl. 2013 (2013), 277, doi:10.1186/1687-1812-2013-277.

M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (2013), 1259 – 1268, doi:10.2298/FIL1307259S.

D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94, doi:10.1186/1687-1812-2012-94.


Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905