### On the solution of a system of integral equations via matrix version of Banach contraction principle

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

bibitem{Perov} A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn., 2 (1964), 115-134.

bibitem{Varga} R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, Springer, Berlin, Germany, 27 (2000).

bibitem {Filip} A.D. Filip, A. Petrusel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory Appl. 2010 (2010), Article ID 281381.

bibitem{Rus} I.A. Rus, Principles and Applications of the Fixed Point Theory, Dacia, Cluj-Napoca, Romania, (1979).

bibitem{Turinici} M. Turinici, Finite-dimensional vector contractions and their fixed points, Studia Universitatis Babes-Bolyai Mathematica, 35 (1990), 30-42.

bibitem {Bucur} A. Bucur, L. Guran, A. Petrusel, Fixed points for multivalued operators on a set endowed with vector-valued metrics

and applications, Fixed Point Theory 10(2009), 19-34.

bibitem {Regan} D. O'Regan, N. Shahzad, R.P. Agarwal, Fixed Point Theory for Generalized Contractive Maps on Spaces with Vector-Valued Metrics. Fixed Point Theory and Applications, Nova Science Publishers, New York (2007) 143-149.

bibitem{Chistyakov1} V.V. Chistyakov, Modular metric spaces I basic concepts, Nonlinear Anal., 72 (2010), 1-14.

bibitem{Khamsi1} A.A.N. Abdou, M.A. Khamsi, Fixed points of multivalued contraction mappings in modular metric spaces, Fixed Point Theory App. (2014), 2014:249.

bibitem{Alfuraidan} M.R. Alfuraidan, Fixed points of multivalued

contraction mappings in modular metric spaces, Fixed Point Theory

Appl., (2015), 2015:46.

bibitem{Kumam1} P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for multivalued mappings in modular metric spaces, Abstr. Appl. Anal., (2012), 2012 Article ID 503504.

bibitem{Chistyakov2} V. V. Chistyakov, Fixed points of modular

contractive maps, Doklady Math., 86 (2012), 515-518.

bibitem{Khamsi3} M. A. Khamsi, W. M. Kozlowski

Fixed Point Theory in Modular Function Spaces, Birkhauser (2015).

DOI: http://dx.doi.org/10.26713%2Fcma.v8i3.548

### Refbacks

- There are currently no refbacks.

eISSN 0975-8607; pISSN 0976-5905