Domination in Cayley Digraphs of Right and Left Groups

Nuttawoot Nupo, Sayan Panma

Abstract


Let Cay(S,A) denote a Cayley digraph of a semigroup S with a connection set A. A semigroup S is said to be a right group if it is isomorphic to the direct product of a group and a right zero semigroup and S is called a left group if it is isomorphic to the direct product of a group and a left zero semigroup. In this paper, we attempt to nd the value or bounds for the domination number of Cayley digraphs of right groups and left groups. Some examples which give sharpness of those bounds are also shown. Moreover, we consider the total domination number and give the necessary and sufficient conditions for the existence of total dominating sets in Cayley digraphs of right groups and left groups.

Keywords


Cayley digraph; Right group; Left group; Domination number; Total domination number

Full Text:

PDF

References


Biggs N., Algebraic Graph Theory, Cambridge University Press, Cambridge

(1993).

Bondy J.A. and Murty U.S.R., Graph Theory with applications, American

Elsevier Publishing Co., INC, New York (1976).

Cockayne E.J., Dawes R.M. and Hedetniemi S.T., Total domination in

graphs, Networks, Vol. 10, No. 3 (1980), 211{219.

Hao Y. and Luo Y., On the Cayley graphs of left (right) groups, Southeast

Asian Bull. Math., Vol. 34 (2010), 685{691.

Haynes T.W., Hedetniemi S.T. and Slater P.J., Fundamentals of domina-

tion in graphs, Marcel Dekker, New York (1998).

Howie J.M., Fundamentals of semigroup theory, Clarendon Press, Oxford

(1995).

Kelarev A.V., On undirected Cayley graphs, Australas. J. Combin., Vol.

(2002), 73{78.

Kelarev A.V. and Praeger C.E., On transitive Cayley graphs of groups and

semigroups, European J. Combin., Vol. 24 (2003), 59{72.

Kelarev A.V. and Quinn S.J., A combinatorial property and Cayley graphs

of semigroups, Semigroup Forum, Vol. 66 (2003), 89{96.

Khosravi B. and Mahmoudi M., On Cayley graphs of rectangular groups,

Discrete Math., Vol. 310 (2010), 804{811.

Khosravi B., On Cayley graphs of left groups, Houston J. Math., Vol. 35,

No. 3 (2009), 745{755.

Knauer U., Algebraic graph theory, W. de Gruyter, Berlin (2011).

Li C.H., Isomorphisms of connected Cayley graphs, Graphs Combin., Vol.

(1998), 37{44.

Li C.H., On isomorphisms of nite Cayley graphs - a survey, Discrete Math.,

Vol. 256 (2002), 301{334.

Meksawang J. and Panma S., Isomorphism conditions for Cayley graphs of

rectangular groups, Bull. Malays. Math. Sci. Soc., Vol. 39 (2016), 29{41.

Panma S., Characterization of Cayley graphs of rectangular groups, Thai

J. Math., Vol. 8, No. 3 (2010), 535{543.

Panma S., Knauer U. and Arworn Sr., On transitive Cayley graphs of right

(left) groups and of Clifford semigroups, Thai J. Math., Vol. 2 (2004), 183{

Panma S., Knauer U. and Arworn Sr., On transitive Cayley graphs of

strong semilattice of right (left) groups, Discrete Math., Vol. 309 (2009),

{5403.

Panma S., Na Chiangmai N., Knauer U. and Arworn Sr., Characterizations

of Clifford semigroup digraphs, Discrete Math., Vol. 306 (2006), 1247{1252.

Panma S., On transitive Cayley graphs of strong semilattice of some com-

pletely simple semigroups, Doctoral thesis, Chiang Mai University, Chiang

Mai (2007).

Ruangnai M., Panma S. and Arworn Sr., On Cayley isomorphisms of left

and right groups, Int. J. of Pure and Applied Math., Vol. 80, No. 4 (2012),

{571.

Tamizh Chelvam T. and Kalaimurugan G., Bounds for domination param-

eters in Cayley graphs on Dihedral group, Open J. of Discrete Math., Vol.

, No. 1 (2012), 5{10.

Tamizh Chelvam T. and Mutharasu S., Total domination in Circulant

graphs, Int. J. Open Problems Compt. Math., Vol. 4, No. 2 (2011), 168{174.

Tamizh Chelvam T. and Rani I., Dominating sets in Cayley graphs on Zn,

Tamkang J. Math., Vol. 37, No. 4 (2007), 341{345.

Tamizh Chelvam T. and Rani I., Independent domination number of Cayley

graphs on Zn, J. of Comb. Math. and Comb. Computing, Vol. 69 (2009),

{255.

Tamizh Chelvam T. and Rani I., Total and connected domination numbers

of Cayley graphs on Zn, Advanced Studies in Contemp. Math., Vol. 20

(2010), 57{61.




DOI: http://dx.doi.org/10.26713%2Fcma.v8i3.532

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905