A Multifaceted Novel Approach to Identify Deceptive Reviews Based on Psychology Theories: A New Dataset

Authors

  • Abeer Hassan Asiri Faculty of Computer and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
  • Fahad Mazaed Alotaibi Faculty of Computer and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

DOI:

https://doi.org/10.26713/cma.v16i1.3310

Keywords:

Deception, Framework, Lying detection, Deception indicators, Online reviews

Abstract

 As deception negatively impacts various areas, deception detection is an important field of study. This paper introduces a framework to detect online review deception. It studied aspects of deceptive reviews, considering the complex nature of deception in textual data and the low chance of direct detection. Furthermore, the paper presents a new corpus for deceptive reviews labeled using deception hints. This dataset was compiled in English and extracted from Google Maps reviews. We focused on the reviews of “restaurants” in New York. The novelty of this dataset is that the truthful and deceptive reviews were not deliberately collected; that is, participants were not requested to write lies, but the texts were collected after the individuals had written them. We used predefined criteria using deception indicators to differentiate deceptive and truthful reviews for this dataset. Each suggested indicator is not a definitive indicator on its own, but we assessed review authenticity using a set of indicators together. This paper aims to discuss lie detection strategies and theories, design a theory-based framework to detect deception in online reviews and implement the framework on a real-world dataset to provide a foundation for future empirical research and practical applications. The experimental results obtained from our labeled benchmark dataset showcase the effectiveness of this approach.

Downloads

Download data is not yet available.

References

M. Abdulqader, A. Namoun and Y. Alsaawy, Fake online reviews: A unified detection model using deception theories, IEEE Access 10 (2022), 128622 – 128655, DOI: 10.1109/ACCESS.2022.3227631.

E. Abedin, A. Mendoza and S. Karunasekera, Credible vs fake: A literature review on differentiating online reviews based on credibility, in: Forty-First International Conference on Information Systems, India 2020, pp. 1 – 17 (2020).

F. Abri, L. F. Gutiérrez, A. S. Namin, K. S. Jones and D. R. W. Sears, Linguistic features for detecting fake reviews, in: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA, Miami, FL, USA, 2020), pp. 352 – 359 (2020), DOI: 10.1109/ICMLA51294.2020.00063.

H. Alaskar, Z. Sbaï, W. Khan, A. Hussain and A. Alrawais, Intelligent techniques for deception detection: A survey and critical study, Soft Computing 27(7) (2023), 3581 – 3600, DOI: 10.1007/s00500-022-07603-w.

S. N. Alsubari, M. B. Shelke and S. N. Deshmukh, Fake reviews identification based on deep computational linguistic features, International Journal of Advanced Science and Technology 29(8s) (2020), 3846 – 3856.

S. N. Alsubari, S. N. Deshmukh, A. A. Alqarni, N. Alsharif, T. H. H. Aldhyani, F. W. Alsaade and O. I. Khalaf, Data analytics for the identification of fake reviews using supervised learning, Computers, Materials & Continua 70(2) (2022), 3189 – 3204, DOI: 10.32604/cmc.2022.019625.

S. Ansari and S. Gupta, Review manipulation: Literature review, and future research agenda, Pacific Asia Journal of the Association for Information Systems 13(1) (2021), Article 4, DOI: 10.17705/1pais.13104.

M. Z. Asghar, A. Ullah, S. Ahmad and A. Khan, Opinion spam detection framework using hybrid classification scheme, Soft Computing 24(5) (2020), 3475 – 3498, DOI: 10.1007/s00500-019-04107-y.

I. Augenstein, L. Derczynski and K. Bontcheva, Generalisation in named entity recognition: A quantitative analysis, Computer Speech & Language 44 (2017), 61 – 83, DOI: 10.1016/j.csl.2017.01.012.

K. Barik and S. Misra, Analysis of customer reviews with an improved VADER lexicon classifier, Journal of Big Data 11 (2024), Article number: 10, DOI: 10.1186/s40537-023-00861-x.

G. Bathla, P. Singh, R. K. Singh, E. Cambria and R. Tiwari, Intelligent fake reviews detection based on aspect extraction and analysis using deep learning, Neural Computing and Applications 34 (2022), 20213 – 20229, DOI: 10.1007/s00521-022-07531-8.

R. F. Baumeister and D. G. Hutton, Self-presentation theory: Self-construction and audience pleasing, in: Theories of Group Behavior, B. Mullen and G. R. Goethals (editors), Springer Series in Social Psychology, Springer, New York, pp. 71 – 87 (1987), DOI: 10.1007/978-1-4612-4634-3_4.

S. Berry, Fake Google restaurant reviews and the implications for consumers and restaurants, arXiv:2401.11345 (2024), 1 – 158, DOI: 10.48550/arXiv.2401.11345.

J. K. Burgoon and D. B. Buller, Interpersonal deception theory, in: The International Encyclopedia of Interpersonal Communication, C. R. Berger, M. E. Roloff, S. R. Wilson, J. P. Dillard, J. Caughlin and D. Solomon (editors), John Wiley & Sons, Ltd., (2015), DOI: 10.1002/9781118540190.wbeic170.

T. L. Carson, Lying and Deception: Theory and Practice, Oxford University Press, Oxford, (2010), DOI: 10.1093/acprof:oso/9780199577415.001.0001.

M. Carter, M. Tsikerdekis and S. Zeadally, Approaches for fake content detection: Strengths and weaknesses to adversarial attacks, IEEE Internet Computing 25(2) (2021), 73 – 83, DOI: 10.1109/MIC.2020.3032323.

E. A. Cranford, C. Gonzalez, P. Aggarwal, M. Tambe, S. Cooney and C. Lebiere, Towards a cognitive theory of cyber deception, Cognitive Science 45(7) (2021), e13013, DOI: 10.1111/cogs.13013.

J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 3rd edition, Sage Publications, Inc., Thousand Oaks, CA, xxix + 260 pages (2009).

K. S. Desale, S. Shinde, N. Magar, S. Kullolli and A. Kurhade, Fake review detection with concept drift in the data: A survey, in: Proceedings of Seventh International Congress on Information and Communication Technology, X.-S. Yang, S. Sherratt, N. Dey and A. Joshi (editors), Springer Nature, Singapore, pp. 719 – 726 (2023), DOI: 10.1007/978-981-19-1610-6_63.

I. Goormans, L. Mergaerts and C. Vandeviver, SCANning for truth. Scholars’ and practitioners’ perceptions on the use(fulness) of Scientific Content Analysis in detecting deception during police interviews, Psychology, Crime & Law 30(9) (2022), 971 – 993, DOI: 10.1080/1068316X.2022.2139828.

P. Gryka and A. Janicki, Detecting fake reviews in Google Maps — A case study, Applied Sciences 13(10) (2023), 6331, DOI: 10.3390/app13106331.

P. Hajek and J.-M. Sahut, Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection, Technological Forecasting and Social Change 177 (2022), 121532, DOI: 10.1016/j.techfore.2022.121532.

S. Hlee, H. Lee, C. Koo and N. Chung, Fake reviews or not: Exploring the relationship between time trend and online restaurant reviews, Telematics and Informatics 59 (2021), 101560, DOI: 10.1016/j.tele.2020.101560.

H. A. Howard, D. J. Griffin and Z. W. Arth, Information manipulation and cognitive trust: An organizational replication and extension of IMT, Atlantic Journal of Communication 30(3) (2002), 219 – 230, DOI: 10.1080/15456870.2021.1884078.

K. Ioannidis, T. Offerman and R. Sloof, Lie detection: A strategic analysis of the verifiability approach, American Law and Economics Review 24(2) (2022), 659 – 705, DOI: 10.1093/aler/ahac005.

A. A. Iswara and K. A. Bisena, Manipulation and persuasion through language features in fake news, Retorika: Jurnal Ilmu Bahasa 6(1) (2020), 26 – 32, DOI: 10.22225/jr.6.1.1338.26-32.

N. Jindal and B. Liu, Opinion spam and analysis, in: Proceedings of the 2008 International Conference on Web Search and Data Mining (WSDM’08), Association for Computing Machinery, New York, NY, USA, pp. 219 – 230 (2008), DOI: 10.1145/1341531.1341560.

A. Kuzio, Cross-cultural Deception in Polish and American English in Computer-Mediated Communication, Cambridge Scholars Publishing, Newcastle upon Tyne, UK, (2018).

H. Le and B. Kim, Detection of fake reviews on social media using machine learning algorithms, Issues in Information Systems 21(1) (2020), 185 – 194, DOI: 10.48009/1_iis_2020_185-194.

G. Lebanon and M. El-Geish, Computing with Data: An Introduction to the Data Industry, Springer, xvii + 576 pages (2018), DOI: 10.1007/978-3-319-98149-9.

L. Li, B. Qin, W. Ren and T. Liu, Document representation and feature combination for deceptive spam review detection, Neurocomputing 254 (2017), 33 – 41, DOI: 10.1016/j.neucom.2016.10.080.

F. Li, M. Huang, Y. Yang and X. Zhu, Learning to identify review spam, in: Proceedings of the TwentySecond International Joint Conference on Artificial Intelligence (IJCAI’11, Barcelona, Catalonia, Spain), Vol. 3, AAAI Press, pp. 2488 – 2493 (2011), DOI: 10.5591/978-1-57735-516-8/IJCAI11-414.

J. Li, M. Ott, C. Cardie and E. Hovy, Towards a general rule for identifying deceptive opinion spam, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Baltimore, Maryland, pp. 1566 – 1576 (2014), DOI: 10.3115/v1/P14-1147.

J. Li, X. Xu and E. W. T. Ngai, How review content, sentiment and helpfulness votes jointly affect trust of reviews and attitude, Internet Research 34(6) (2024), 2232 – 2256, DOI: 10.1108/INTR-01-2023-0025.

Y. Li, Z. Liu and X. Liu, Who did I lie to that day? Deception impairs memory in daily life, Psychological Research 86(6) (2022), 1763 – 1773, DOI: 10.1007/s00426-021-01619-x.

Y. Li, Z. Zhang, S. Pedersen, X. Liu and Z. Zhang, The influence of relative popularity on negative fake reviews: A case study on restaurant reviews, Journal of Business Research 162 (2023), 113895, DOI: 10.1016/j.jbusres.2023.113895.

Y. Lin, T. Zhu, H. Wu, J. Zhang, X. Wang and A. Zhou, Towards online anti-opinion spam: Spotting fake reviews from the review sequence, in: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM2014, Beijing, China, 2014), IEEE, pp. 261 – 264 (2014), DOI: 10.1109/ASONAM.2014.6921594.

P. Liu, Z. Xu, J. Ai and F. Wang, Identifying indicators of fake reviews based on spammer’s behavior features, in: 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C, Prague, Czech Republic, 2017), pp. 396 – 403 (2017), DOI: 10.1109/QRSC.2017.72.

B. Manaskasemsak, J. Tantisuwankul and A. Rungsawang, Fake review and reviewer detection through behavioral graph partitioning integrating deep neural network, Neural Computing and Applications 35 (2023), 1169 – 1182, DOI: 10.1007/s00521-021-05948-1.

B. Marcus, ‘Faking’ from the applicant’s perspective: A theory of self-presentation in personnel selection settings, International Journal of Selection and Assessment 17(4) (2009), 417 – 430, DOI: 10.1111/j.1468-2389.2009.00483.x.

R. Mohawesh, S. Xu, M. Springer, Y. Jararweh, M. Al-Hawawreh and S. Maqsood, An explainable ensemble of multi-view deep learning model for fake review detection, Journal of King Saud University - Computer and Information Sciences 35(8) (2023), 101644, DOI: 10.1016/j.jksuci.2023.101644.

R. Mohawesh, S. Xu, S. N. Tran, R. Ollington, M. Springer and Y. Jararweh, Fake reviews detection: A survey, IEEE Access 9 (2021), 65771 – 65802, DOI: 10.1109/ACCESS.2021.3075573.

A. Mukherjee, V. Venkataraman, B. Liu and N. Glance, Fake review detection: Classification and analysis of real and pseudo reviews, Technical Report, Department of Computer Science (UIC-CS-2013-03), University of Illinois at Chicago, USA, (2013), URL: https://www2.cs.uh.edu/~arjun/tr/UIC-CS-TR-yelp-spam.pdf.

A. Mukherjee, V. Venkataraman, B. Liu and N. Glance, What yelp fake review filter might be doing?, Proceedings of the International AAAI Conference on Web and Social Media 7(1) (2013), 409 – 418, DOI: 10.1609/icwsm.v7i1.14389.

G. Nahari, Chapter 14 – The applicability of the verifiability approach to the real world, Detecting Concealed Information and Deception: Recent Development, J. P. Rosenfeld (editor), Academic Press, pp. 329 – 349 (2018), DOI: 10.1016/B978-0-12-812729-2.00014-8.

M. Neumann, D. King, I. Beltagy and W. Ammar, ScispaCy: fast and robust models for biomedical natural language processing, in: Proceedings of the 18th BioNLP Workshop and Shared Task, Florence, Italy, Association for Computational Linguistics, pp. 319 – 327 (2019), DOI: 10.18653/v1/W19-5034.

A. Nortje and C. Tredoux, How good are we at detecting deception? A review of current techniques and theories, South African Journal of Psychology 49(4) (2019), 491 – 504, DOI: 10.1177/0081246318822953.

Y. Pan and L. Xu, Detecting fake online reviews: An unsupervised detection method with a novel performance evaluation, International Journal of Electronic Commerce 28(1) (2024), 84 – 107, DOI: 10.1080/10864415.2023.2295067.

S. A. Prome, N. A. Ragavan, M. R. Islam, D. Asirvatham and A. J. Jegathesan, Deception detection using machine learning (ML) and deep learning (DL) techniques: A systematic review, Natural Language Processing Journal 6 (2024), 100057, DOI: 10.1016/j.nlp.2024.100057.

R. Reddy and A. U. Motagi, Fake review detection and emotion recognition based on semantic feature selection with bi-directional long short term memory, International Journal of Intelligent Engineering and Systems 15(5) (2022), 473 – 482, DOI: 10.22266/ijies2022.1031.41.

G. M. Shahariar, Md. T. R. Shawon, F. M. Shah, M. S. Alam and Md. S. Mahbub, Bengali fake reviews: A benchmark dataset and detection system, Neurocomputing 592, 127732, DOI: 10.1016/j.neucom.2024.127732.

L. Shi, S. Xie, L. Wei, Y. Tao, A. W. Junaid and Y. Gao, Joint sentiment topic model with word embeddings for fake review detection, SSRN, DOI: 10.2139/ssrn.4096565.

N. Shirin, F. Erfan, N. Salim and G. S. Hamid, A novel approach for opinion spam detection in e-commerce, in: Proceedings of the 8th International Conference on E-Commerce with a Focus on E-Trust, Mashhad, Iran (2014).

S. Shojaee, A. Azman, M. Murad, N. Sharef and N. Sulaiman, A framework for fake review annotation, in: Proceedings of the 2015 17th UKSIM-AMSS International Conference on Modelling and Simulation (UKSIM’15), IEEE Computer Society, pp. 153 – 158 (2015).

N. Smith, Reading between the lines: An evaluation of the Scientific Content Analysis technique (SCAN), C. F. Willis (editor), Great Britain Home Office, England, United Kingdom, 53 pages (2001), URL: https://www.ojp.gov/ncjrs/virtual-library/abstracts/reading-between-lines-evaluationscientific-content-analysis.

S. L. Sporer, A. L. Manzanero and J. Masip, Optimizing CBCA and RM research: recommendations for analyzing and reporting data on content cues to deception, Psychology, Crime & Law 27(1) (2021), 1 – 39, DOI: 10.1080/1068316X.2020.1757097.

C. Sun, Q. Du and G. Tian, Exploiting product related review features for fake review detection, Mathematical Problems in Engineering 2016 (2016), e4935792, DOI: 10.1155/2016/4935792.

J. Y. Thomas and D. P. Biros, An empirical evaluation of interpersonal deception theory in a real-world, high-stakes environment, Journal of Criminal Psychology 10(3) (2020), 185 – 199, DOI: 10.1108/JCP-07-2019-0025.

B. Verschuere, G. Bogaard and E. Meijer, Discriminating deceptive from truthful statements using the verifiability approach: A meta-analysis, Applied Cognitive Psychology 35(2) (2020), 374 – 384, DOI: 10.1002/acp.3775.

A. Vrij and G. Ganis, Chapter 7 – Theories in deception and lie detection, Credibility Assessment, D. C. Raskin, C. R. Honts and J. C. Kircher (editors), Academic Press, San Diego, pp. 301 – 374 (2014), DOI: 10.1016/B978-0-12-394433-7.00007-5.

A. Vrij, M. Hartwig and P. A. Granhag, Reading lies: Nonverbal communication and deception, Annual Review of Psychology 70(1) (2019), 295 – 317, DOI: 10.1146/annurev-psych-010418-103135.

A. Vrij, P. A. Granhag, T. Ashkenazi, G. Ganis, S. Leal and R. P. Fisher, Verbal lie detection: Its past, present and future, Brain Sciences 12(12) (2022), 1644, DOI: 10.3390/brainsci12121644.

A. Wielgopolan and K. K. Imbir, Cognitive load and deception detection performance, Cognitive Science 47(7) (2023), e13321, DOI: 10.1111/cogs.13321.

M. Wise and D. Rodriguez, Detecting deceptive communication through computer-mediated technology: Applying interpersonal deception theory to texting behavior, Communication Research Reports 30(4) (2013), 342 – 346, DOI: 10.1080/08824096.2013.823861.

Y. Wu, E. W. T. Ngai, P. Wu and C. Wu, Fake online reviews: Literature review, synthesis, and directions for future research, Decision Support Systems 132 (2020), 113280, DOI: 10.1016/j.dss.2020.113280.

K.-H. Yoo and U. Gretzel, Comparison of deceptive and truthful travel reviews, in : Information and Communication Technologies in Tourism, W. Höpken, U. Gretzel and R. Law (editors), Springer, Vienna, pp. 37 – 47 (2009), DOI: 10.1007/978-3-211-93971-0_4.

Downloads

Published

30-07-2025
CITATION

How to Cite

Asiri, A. H., & Alotaibi, F. M. (2025). A Multifaceted Novel Approach to Identify Deceptive Reviews Based on Psychology Theories: A New Dataset. Communications in Mathematics and Applications, 16(1), 375–404. https://doi.org/10.26713/cma.v16i1.3310

Issue

Section

Research Article