On the Phragmén-Lindelöf principle for entire power series on a Banach algebra

Roberto Contreras-Juárez, Carlos Palomino-Jiménez

Abstract


Many authors have managed to successfully extend the classical theory  of analytic functions to functions defined on more abstract spaces (see for example [3, 8, 9]). The purpose of this paper is to provide a bit in this direction. In this paper an extension of the Phragmén-Lindelöf principles of the classical theory to the functions expressed as power series on a Banach algebra not necessarily commutative, of course, involving concepts such as harmonic and subharmonic, is introduced.

Keywords


Banach algebra; Phragmen-Lindelöf principle; Power series

Full Text:

PDF

References


Bezanilla López, A. Elementos Asintóticos de Funciones L-enteras sobre Álgebras de Banach Conmutativas y Acotaciones Inferiores para el Orden de la Función. Revista Ciencias Matemáticas,Vol.XII,No.1, (1991), 35–46.

Bezanilla López, A. Sobreel Comportamiento As intóticoyelordende Seriesde Potencias convergentes en un Álgebra de Banach. Revista Ciencias Matemáticas, Vol. XIII, No. 3, (1993), 17–30.

Blum, E. K. A theory of analytic functions in Banach algebras. Trans. Amer. Soc 78(1955), 343–370.

Contreras J., R. and Bezanilla L., A. Maximum module principle for power series on a Banach algebra. Divulgaciones Matemáticas12,No.2 (2004), 155–160 (in Spanish).

Contreras J., R. and Bezanilla L., A. On a Ahlfors-Denjoy Type Result. Communications in Mathematics and Applications 5, No.1 (2014), 41–46.

Evgrafov, M. A. Analytic functions. Dover Publications, Inc. New York, 1966.

Hille, E. and Phillips, R. S. Functional analysis ans semi-groups. Amer. Math. Soc., Colloquium Publications31, 1957.

Lorch, Edgar R. The Theory of Functions in Normed Abelian Vector Rings. Transactions of The American Mathematical Society 54(3), (1943), 414–425.

Mibu, Y. On the theory of regular functions in Banach algebras. Momors. of the College of Science, University of Kioto, Series A, Vol.XXXIII, MathNo.2, (1960), 323–340.

Hayman, W. K. and Kennedy, P. B. Subharmonic functions. Academic Press, Inc. New York,31, 1976.

Levin. B. Ya. Letures on entire functions. Translations of Mathematical Monographs, Vol. 150, 1991.


Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905