Orthogonal Generalized \((\sigma, \tau)\)-Derivations on Semiprime \(\Gamma\)-Semirings

Authors

DOI:

https://doi.org/10.26713/cma.v16i1.2973

Keywords:

\((\sigma, \tau)\)-Derivation, Generalized \((\sigma,\tau)\)-Derivation, Orthogonal \((\sigma, \tau)\)-Derivation, \(\Gamma\)-Semiring, Semiprime \(\Gamma\)-Semiring

Abstract

In this study, we regard \(M\) as a semiprime \(\Gamma\)-semiring and introduce the notion of orthogonal \((\sigma,\tau)\)-derivations within such structures. We explore various characterizations of semiprime \(\Gamma\)-semirings and determine the conditions under which two \((\sigma,\tau)\)-derivations are orthogonal.

Downloads

Download data is not yet available.

References

K. K. Dey, A. C. Paul and I. S. Rakhimov, Orthogonal generalized derivations in semiprime gamma near-rings, International Journal of Algebra 6(23) (2012), 1127 – 1134.

S. Huang, On orthogonal generalized (σ,τ)-derivations of semiprime near-rings, Kyungpook Mathematical Journal 50(3) (2010), 379 – 387, DOI: 10.5666/KMJ.2010.50.3.379.

M. A. Javed, M. Aslam and M. Hussain, On derivations of prime Γ-semirings, Southeast Asian Bulletin of Mathematics 37(6) (2013), 859 – 865.

A. H. Majeed and S. A. Hamil, Orthogonal generalized derivations on Γ-semirings, Journal of Physics: Conference Series 1530(1) (2020), 012042, DOI: 10.1088/1742-6596/1530/1/012042.

V. S. V. K. Murty and C. J. S. Reddy, Orthogonal generalized symmetric reverse biderivations in semiprime rings, Journal of Applied and Pure Mathematics 6(3-4) (2024), 155 – 165, DOI: 10.23091/japm.2024.155.

V. S. V. K. Murty, C. J. S. Reddy and J. S. Sukanya, Orthogonal generalized (σ,τ)-derivations in semiprime Γ-near rings, Advances in Mathematics: Scientific Journal 13(3) (2024), 311 – 321, DOI: 10.37418/amsj.13.3.4.

V. S. V. K. Murty, C. J. S. Reddy and K. Chennakesavulu, Orthogonal (σ,τ)-derivations in semiprime Γ-semirings, International Journal of Mathematics Trends and Technology 70(7) (2024), 13 – 17, DOI: 10.14445/22315373/IJMTT-V70I7P103.

V. S. V. K. Murty, C. J. S. Reddy and S. Haseena, Orthogonal generalized (σ,τ)-derivations on ideals of semiprime-rings, JP Journal of Algebra and Number Theory 63(6) (2024), 481 – 503, DOI: 10.17654/0972555524029.

V. S. V. K. Murty, K. Chennakesavulu and C. J. S. Reddy, Orthogonal generalized symmetric reverse bi-(σ,τ)-derivations in semi prime rings, Communications on Applied Nonlinear Analysis 31(3s) (2024), 156 – 168, DOI: 10.52783/cana.v31.756.

N. Nobusawa, On a generalization of the ring theory, Osaka Journal of Mathematics 1(1) (1964), 81 – 89, URL: https://projecteuclid.org/journalArticle/Download?urlid=ojm%2F1200691002.

M. M. K. Rao, Γ-semirings-I, Southeast Asian Bulletin of Mathematics 19(1) (1995), 49 – 54.

M. M. K. Rao, Γ-semirings-II, Southeast Asian Bulletin of Mathematics 21(3) (1997), 281 – 287.

C. J. S. Reddy and V. S. V. K. Murty, Orthogonal symmetric reverse bi-(σ,τ)-derivations in semiprime rings, Tuijin Jishu/Journal of Propulsion Technology 45(1) (2024), 5133 – 5138.

M. K. Sen, On Γ-semigroups, in: Proceeding of International Conference on Algebra and its Applications (New Delhi, 1981), Lecture Notes in Pure and Applied Mathematics series, Vol. 9, Decker Publication, New York, pp. 301 – 308 (1984).

N. Suganthameena and M. Chandramouleeswaran, Orthogonal derivations on semirings, International Journal of Contemporary Mathematical Science 9(13) (2014), 645 – 651, DOI: 10.12988/ijcms.2014.49100.

H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bulletin of American Mathematical Society 40(12) (1934), 914 – 921.

B. Venkateswarlu, M. M. K. Rao and Y. A. Narayana, Orthogonal derivations on Γ-semirings, Bulletin of the International Mathematical Virtual Institute 8 (2018), 543 – 552.

B. Venkateswarlu, M. M. K. Rao and Y. A. Narayana, Orthogonal reverse derivations on semiprime Γ-semirings, Mathematical Sciences and Applications E-Notes 7(1) (2019), 71 – 77, DOI: 10.36753/mathenot.559255.

Downloads

Published

01-07-2025
CITATION

How to Cite

Murty, V. S. V. K., Reddy, C. J. S., & Haseena, S. (2025). Orthogonal Generalized \((\sigma, \tau)\)-Derivations on Semiprime \(\Gamma\)-Semirings. Communications in Mathematics and Applications, 16(1), 265–275. https://doi.org/10.26713/cma.v16i1.2973

Issue

Section

Research Article