Mean Iterative Approach for Multiple Polynomial Zeros and Convergence

Authors

  • Rajat Subhra Das Department of Mathematics, Dr. L.K.V.D. College (affiliated to L.N. Mithila University), Tajpur, Samastipur, Bihar, India https://orcid.org/0009-0000-1589-0411
  • Abhimanyu Kumar Department of Mathematics, L.N. Mithila University, Darbhanga, Bihar, India

DOI:

https://doi.org/10.26713/cma.v16i1.2971

Keywords:

Local convergence, Polynomial zeros, Multiple zeros, Initial conditions, Normed field, Chebyshev method, Halley method, Super-Halley method

Abstract

In this study, we propose a mean iterative approach of third order for solving a polynomial equation that has multiple type zeros. We used three prominent third-order algorithms for this build: Chebyshev, Halley and Super-Halley (CHS). For this CHS Combined Mean Method, we developed two forms of local convergence theorems to determine the convergence. We used the gauge function to determine the convergence of our technique. We employed two distinct forms of initial conditions on a field with norm to prove the local convergence theorems for the CHS combined mean technique. Our convergence analysis includes error estimates.

Downloads

Download data is not yet available.

Author Biography

Abhimanyu Kumar, Department of Mathematics, L.N. Mithila University, Darbhanga, Bihar, India

 

 

References

P. Chebychev, Collected Works, Academy of Sciences of the USSR, Moscow-Leningrad, (1944). (in Russian)

C. Chun and B. Neta, A third-order modification of Newton’s method for multiple roots, Applied Mathematics and Computation 211(2) (2009), 474 – 479, DOI: 10.1016/j.amc.2009.01.087.

R. S. Das and A. Kumar, Construction and convergence of h-s combined mean method for multiple polynomial zeros, Communications in Mathematics and Applications 14(5) (2023), 1679 – 1692, DOI: 10.26713/cma.v14i5.2329.

J. M. Gutiérrez and M. A. Hernandez, An acceleration of Newtons method: Super-Halley method, Applied Mathematics and Computation 117(2-3) (2001), 223 – 239, DOI: 10.1016/S0096-3003(99)00175-7.

E. Halley, Methodus nova accurata & facilis inveniendi radices æqnationum quarumcumque generaliter, sine praviæ reductione, Philosophical Transactions of the Royal Society of London 18(210) (1964), 136 – 148, DOI: 10.1098/rstl.1694.0029.

S. I. Ivanov, General local convergence theorems about the Picard iteration in arbitrary normed fields with applications to Super-Halley method for multiple polynomial zeros, Mathematics 8(9) (2020), 1599, DOI: 10.3390/math8091599.

S. I. Ivanov, Unified convergence analysis of Chebyshev-Halley methods for multiple polynomial zeros, Mathematics 10(1) (2022), 135, DOI: 10.3390/math10010135.

B. Neta, New third order nonlinear solvers for multiple roots, Applied Mathematics and Computation 202(1) (2008), 162 – 170, DOI: 10.1016/j.amc.2008.01.031.

N. Obreshkov, Sur la solution numerique des equations, Annuaire de l’Université de Sofia Faculté de Physique i Matematika 56 (1963), 73 – 83. (in Bulgarian)

N. Osada, Asymptotic error constants of cubically convergent zero finding methods, Journal of Computational and Applied Mathematics 196(2) (2006), 347 – 357, DOI: 10.1016/j.cam.2005.09.016.

P. D. Proinov, General convergence theorems for iterative processes and applications to the Weierstrass root-finding method, Journal of Complexity 33 (2016), 118 – 144, DOI: 10.1016/j.jco.2015.10.001.

P. D. Proinov, New general convergence theory for iterative processes and its applications to Newtons-Kantorovich type theorems, Journal of Complexity 26(1) (2010), 3 – 42, DOI: 10.1016/j.jco.2009.05.001.

H. Ren and I. K. Argyros, Convergence radius of the modified Newton method for multiple zeros under Holder continuous derivative, Applied Mathematics and Computation 217(2) (2010), 612 – 621, DOI: 10.1016/j.amc.2010.05.098.

J. F. Traub, Iterative Methods for the Solution of Equations, American Mathematical Society, USA, 310 pages (1982).

Downloads

Published

01-07-2025
CITATION

How to Cite

Das, R. S., & Kumar, A. (2025). Mean Iterative Approach for Multiple Polynomial Zeros and Convergence. Communications in Mathematics and Applications, 16(1), 143–154. https://doi.org/10.26713/cma.v16i1.2971

Issue

Section

Research Article